TY - JOUR A1 - Caron, J. A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Babu, S. S. A1 - Lippold, J. T1 - Effect of continuous cooling transformation variations on numerical calculation of welding-induced residual stresses JF - Welding journal N2 - Continuous cooling transformation (CCT) behavior affects the transient state of material properties employed in a numerical welding simulation, having a direct influence on the developing stress state. Three different CCT diagrams for S355J2 steel were employed to understand the influence of variations in CCT behavior on the numerical calculation of welding-induced residual stresses. The CCT diagrams were constructed from transformation data contained in the Sysweld software database, measured dilatometric data from Gleeble experiments, and transformation data calculated from the JMatPro software. The calculated transverse and longitudinal residual stress distributions provided a qualitative correction only in comparison to experimental measurements, with the largest deviation occurring near the weld interface. Overall, the results indicate a weak dependency of the calculated residual stresses due to anticipated CCT variations. The most significant effect on the calculated residual stresses was shown to be related to the proportion of formed martensite. It is suggested that CCT data of approximate accuracy is sufficient for reliable calculation of welding-induced residual stresses. KW - Continuous cooling transformation diagrams KW - Residual stresses KW - Gas metal arc welding KW - C-Mn steels KW - Welding simulation KW - Schweißsimulation KW - Eigenspannungen KW - Martensitbildung KW - Sensitivitätsanalyse KW - Sysweld KW - Martensite kinetic KW - Sensitivity analysis PY - 2010 SN - 0043-2296 SN - 0096-7629 VL - 89 SP - 151-s - 160-s PB - American Welding Society CY - New York, NY AN - OPUS4-21444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -