TY - JOUR A1 - Lima, D.L.D. A1 - Schneider, Rudolf A1 - Scherer, H.W. A1 - Duarte, A.C. A1 - Santos, E.B.H. A1 - Esteves, V.I. T1 - Sorption-desorption behavior of atrazine on soils subjected to different organic long-term amendments JF - Journal of agricultural and food chemistry N2 - Sorption of atrazine on soils subjected to three different organic amendments was measured using a batch equilibrium technique. A higher KF value (2.20 kg-1(mg L-1)-N) was obtained for soil fertilized with compost, which had a higher organic matter (OM) content. A correlation between the KFOC values and the percentage of aromatic carbon in OM was observed. The highest KFOC value was obtained for the soil with the highest aromatic content. Higher aromatic content results in higher hydrophobicity of OM, and hydrophobic interactions play a key role in binding of atrazine. On the other hand, the soil amended with farmyard manure had a higher content of carboxylic units, which could be responsible for hydrogen bonding between atrazine and OM. Dominance of hydrogen bonds compared to hydrophobic interactions can be responsible for the lower desorption capacity observed with the farmyard manure soil. The stronger hydrogen bonding can reduce the leaching of atrazine into drinking water resources and runoff to rivers and other surface waters. KW - Capillary electrophoresis KW - Atrazine KW - Sorption KW - Soil KW - Compost KW - Sewage sludge KW - Farmyard manure PY - 2010 DO - https://doi.org/10.1021/jf903937d SN - 0021-8561 SN - 1520-5118 VL - 58 IS - 5 SP - 3101 EP - 3106 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-21108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santos, S. A1 - Costa, C. A. E. A1 - Duarte, A. C. A1 - Scherer, H. W. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Santos, E. B. H. T1 - Influence of different organic amendments on the potential availability of metals from soil: A study on metal fractionation and extraction kinetics by EDTA JF - Chemosphere N2 - The effects of long-term application of different organic amendments, as compared to mineral fertilizer, on Zn, Cu and Pb content and leachability in a luvisol derived from loess were assessed. The organic fertilizers, applied since 1962, were compost (COM) – from green organic household waste, sewage sludge (SLU) – from municipal water treatment facilities, farmyard manure (FYM) and the doses applied since 1997 were 90 t ha-1, 10 t ha-1 and 9 t ha-1, once in 3 years, respectively. The kinetics of metals extraction with 0.05 mol dm-3 EDTA at pH 6.0 has been studied. The two first-order reactions model was fitted to the kinetic data and allowed to distinguish two pools for each metal: a 'labile' fraction (Q1), quickly extracted with a rate constant k1, and a 'moderately labile' fraction (Q2), more slowly extracted, with a rate constant k2. Simultaneously, the pseudo-total metal contents in the soil samples were determined after digestion with aqua regia (3:1 HCl + HNO3). The obtained parameters Q1, k1, Q2, k2, for the kinetics of extraction of each metal in the three replicates of each fertilization mode, as well as the pseudo-total metal contents, were statistically analysed. COM and SLU application resulted in an increase of the total contents of Pb, Zn and Cu in soil. Further, the percentage of labile Zn and Pb also increased in consequence of the application of those amendments, particularly COM. The increase was more noticeable for Zn. FYM, despite not increasing the total content of Pb, Zn or Cu, did also have an effect on the leachability of Zn and Pb, increasing their labile fraction in soil. These results point to a potential risk of increasing metals mobility in soil, mainly Zn, associated to the use of organic amendments, particularly COM or SLU. KW - Compost KW - Sewage sludge KW - Soils KW - Metal mobility KW - EDTA KW - Kinetics PY - 2010 DO - https://doi.org/10.1016/j.chemosphere.2009.11.008 SN - 0045-6535 SN - 0366-7111 VL - 78 IS - 4 SP - 389 EP - 396 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-22187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Bednarz, Marius A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Ricking, Mathias A1 - Altmann, Korinna T1 - A promising approach to monitor microplastic masses in composts JF - Frontiers in Environmental Chemistry N2 - Inputs of plastic impurities into the environment via the application of fertilizers are regulated in Germany and the EU by means of ordinances. Robust and fast analytical methods are the basis of legal regulations. Currently, only macro- and large microplastic contents (>1 mm) are measured. Microplastics (1–1,000 µm), are not yet monitored. Thermal analytical methods are suitable for this purpose, which can determine the mass content and can also be operated fully automatically in routine mode. Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) allows the identification of polymers and the determination of mass contents in solid samples from natural environments. In accordance with the German or European Commission (EC) Fertiliser Ordinance, composting plants should be monitored for microplastic particles with this method in the future. In this context a compost plant was sampled. At the end of the rotting process, the compost was sieved and separated in a coarse (>1 mm) and a fine fraction (<1 mm). The fine fraction was processed using density separation comparing NaCl and NaI as possible salt alternative and screened for microplastic masses by TED-GC/MS with additional validation and quality assurance experiments. With TED-GC/MS total microplastics mass contents of 1.1–3.0 μg/mg in finished compost could be detected with polyethylene mainly. What differs much to the total mass of plastics in the coarse fraction with up to 60 μg/mg, which were visually searched, identified via ATR-FTIR and gravimetrically weighted. KW - Microplastics KW - TED-GC/MS KW - Compost KW - Monitoring KW - Soil PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586688 DO - https://doi.org/10.3389/fenvc.2023.1281558 SN - 2673-4486 VL - 4 SP - 1 EP - 12 PB - Frontiers Media CY - Lausanne AN - OPUS4-58668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -