TY - JOUR A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - Autonomous gas-sensitive microdrone - wind vector estimation and gas distribution mapping JF - IEEE Robotics and automation magazine N2 - This article presents the development and validation of an autonomous, gas sensitive microdrone that is capable of estimating the wind vector in real time using only the onboard control unit of the microdrone and performing gas distribution mapping (DM). Two different sampling approaches are suggested to address this problem. On the one hand, a predefined trajectory is used to explore the target area with the microdrone in a real-world gas DM experiment. As an alternative sampling approach, we introduce an adaptive strategy that suggests next sampling points based on an artificial potential field (APF). Initial results in real-world experiments demonstrate the capability of the proposed adaptive sampling strategy for gas DM and its use for gas source localization. KW - Anemometric sensor KW - Autonomous micro UAV KW - Chemical sensing KW - Gas distribution modelling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Quadrocopter KW - Sensor planning KW - Artificial potential field PY - 2012 DO - https://doi.org/10.1109/MRA.2012.2184671 SN - 1070-9932 VL - 19 IS - 1 SP - 50 EP - 61 PB - IEEE CY - New York, NY, USA AN - OPUS4-25773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X.-D. A1 - Meier, R.J. A1 - Schmittlein, C. A1 - Schreml, S. A1 - Schäferling, Michael A1 - Wolfbeis, Otto S. T1 - A water-sprayable, thermogelating and biocompatible polymer host for use in fluorescent chemical sensing and imaging of oxygen, pH values and temperature JF - Sensors and actuators B: Chemical N2 - We report on the use of a sprayable and thermogelating biomaterial (Poloxamer™; a.k.a. Pluronic™) in optical imaging of pH values, local oxygen and temperature. The material is highly biocompatible and easy to handle. We also show that the material is well permeable to oxygen (thus making it a good choice for use in oxygen sensors), and is stable in liquid solution and at elevated temperature. We demonstrate its applicability in optical sensors for oxygen, pH and temperature. This was accomplished by incorporating appropriate luminescent probes in various kinds of microparticles (which act as hosts for the probes and prevent dye leaching and aggregation), and then dispersing the microparticles in the thermogelating polymer. The resulting sensor gels were deposited on the surface of interest via spraying at temperatures of <20 °C. At these temperatures, the gels adhere well to the target, even on uneven surfaces such as skin, wounds, and bacterial cultures. If temperature is risen to above 25 °C, the gels form a thin and soft but solid sensing layer which, however, can be simply removed from surface of interest by cooling and wiping it off, or by washing with water. Sprayable thermogelating sensors present obvious advantages over other sensors by not causing damage to the surface of interest. In our perception, the sensing materials also have wide further applicability in sensors for other species including clinically relevant gases, enzyme substrates (such as glucose or lactate) and ions. KW - Chemical sensing KW - Imaging KW - Biocompatible polymer KW - Sprayable sensor KW - Fluorescence KW - Poloxamer KW - Pluronic KW - Oxygen sensor KW - pH sensor KW - Temperature sensor PY - 2015 DO - https://doi.org/10.1016/j.snb.2015.05.082 SN - 0925-4005 SN - 1873-3077 VL - 221 SP - 37 EP - 44 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-33855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -