TY - JOUR A1 - Drescher, Daniela A1 - Kneipp, Janina T1 - Nanomaterials in complex biological systems: insights from Raman spectroscopy JF - Chemical society reviews N2 - The interaction of nanomaterials with biomolecules, cells, and organisms plays an important role in cell biology, toxicology, and nanotechnology. Spontaneous Raman scattering can be used to probe biomolecules, cells, whole animals, and nanomaterials alike, opening interesting avenues to study the interaction of nanoparticles with complex biological systems. In this review we discuss work in biomedical Raman spectroscopy that has either been concerned directly with nanostructures and biosystems, or that indicates important directions for successful future studies on processes associated with nano-bio-interactions. KW - Cells KW - Nanomaterials KW - Raman PY - 2012 DO - https://doi.org/10.1039/c2cs35127g SN - 0306-0012 SN - 1460-4744 VL - 41 IS - 17 SP - 5780 EP - 5799 PB - Royal Society of Chemistry CY - London AN - OPUS4-26184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García Fernández, J. A1 - Sánchez-González, C. A1 - Bettmer, J. A1 - Llopi, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Montes-Bayón, M. T1 - Quantitative assessment of the metabolic products of iron oxide nanoparticles to be used as iron supplements in cell cultures JF - Analytica Chimica Acta N2 - Iron nanoparticles (NPs) metabolism is directly associated to human health due to their use as anemia treatment and should be studied in detail in cells. Here we present a speciation strategy for the determination of the metabolic products of iron oxide nanoparticles coated by tartaric and adipic acids in enterocytes-like cell models (Caco-2 and HT-29). Such methodology is based on the use of SDS-modified reversed phase high performance liquid chromatography (HPLC) separation using inductively coupled plasma-mass spectrometry (ICP-MS) as Fe selective detector. Post-column isotope dilution analysis is used as quantification tool by adding Fe-57 as isotopically enriched standard. To assess the separation capability of the method, two different iron nanostructures: iron sucrose nanoparticles -Venofer®- used as model suspension and iron tartrate/adipate-modified nanoparticles, both of about 4 nm (core size) were evaluated. The two nanostructures were injected into the system showing good peak profiles and quantitative elution recoveries (>80%) in both cases. In addition, both nanoparticulate fractions could be based-line separated from ionic iron species, which needed to be complexed with 1mM citrate to elute from the column. Exposed cells up to 0.5mM of iron tartrate/adipate-modified nanoparticles were specifically treated to extract the internalized NPs and the extracts examined using the proposed strategy. The obtained results revealed the presence of three different fractions corresponding to nanoparticle aggregates, dispersed nanoparticles and soluble iron respectively in a single chromatographic run. Quantitative experiments (column recoveries ranging from 60 to 80%) revealed the presence of the majority of the Fe in the nanoparticulated form (>75%) by summing up the dispersed and aggregate particles. Such experiments point out the high uptake and low solubilization rate of the tartrate/adipate NPs making these structures highly suitable as Fe supplements in oral anemia treatments. KW - Fe nanoparticles metabolism KW - Cells KW - HPLC-ICP-MS KW - Species-unspecific on-line isotope dilution PY - 2018 DO - https://doi.org/10.1016/j.aca.2018.08.003 SN - 0003-2670 VL - 1039 SP - 24 EP - 30 PB - Elsevier CY - Amsterdam AN - OPUS4-46817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Accessing radiation damage to biomolecules on the nanoscale by particle-scattering simulations JF - Journal of Physics Communications N2 - Radiation damage to DNA plays a central role in radiation therapy to cure cancer. The physico-chemical and biological processes involved encompass huge time and spatial scales. To obtain a comprehensive understanding on the nano and the macro scale is a very challenging tasks for experimental techniques alone. Therefore particle-scattering simulations are often applied to complement measurements and aide their interpretation, to help in the planning of experiments, to predict their outcome and to test damage models. In the last years, powerful multipurpose particle-scattering framework based on the Monte-Carlo simulation (MCS) method, such as Geant4 and Geant4-DNA, were extended by user friendly interfaces such as TOPAS and TOPAS-nBio. This shifts their applicability from the realm of dedicated specialists to a broader range of scientists. In the present review we aim to give an overview over MCS based approaches to understand radiation interaction on a broad scale, ranging from cancerous tissue, cells and their organelles including the nucleus, mitochondria and membranes, over radiosensitizer such as metallic nanoparticles, and water with additional radical scavenger, down to isolated biomolecules in the form of DNA, RNA, proteins and DNA-protein complexes. Hereby the degradation of biomolecules by direct damage from inelastic scattering processes during the physical stage, and the indirect damage caused by radicals during the chemical stage as well as some parts of the early biological response is covered. Due to their high abundance the action of hydroxyl radicals (•OH) and secondary low energy electrons (LEE) as well as prehydrated electrons are covered in additional detail. Applications in the prediction of DNA damage, DNA repair processes, cell survival and apoptosis, influence of radiosensitizer on the dose distribution within cells and their organelles, the study of linear energy transfer (LET), the relative biological effectiveness (RBE), ion beam cancer therapy, microbeam radiation therapy (MRT), the FLASH effect, and the radiation induced bystander effect are reviewed. KW - DNA KW - Protein KW - G5P KW - OH KW - Au KW - AuNP KW - Radiation KW - SSB KW - DSB KW - Beta decay KW - Brachytherapy KW - Cancer treatment KW - Clustered nanoparticles KW - DNA damage KW - Dosimetry KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Gold Nanoparticles KW - Livermore model KW - Low energy electrons KW - MCS KW - Microdosimetry KW - Monte-Carlo simulation KW - NP KW - OH radical KW - Particle scattering KW - Penelope model KW - Proteins KW - Radiation damage KW - Radiation therapy KW - Radiationtherapy KW - Radioactive decay KW - Radiolysis KW - Radiotherapy KW - Simulation KW - TOPAS KW - TOPAS-nbio KW - Base damage KW - Base loss KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Double-strand break (DSB) KW - ESCA KW - Hydrated DNA KW - Hydrated electron KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionization KW - Ionisation KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radical KW - Reactive oxygen species KW - Single-strand break (SSB) KW - XPS KW - Xray KW - Xray photo electron spectrocopy KW - Cosolute KW - Ectoin KW - Ectoine KW - GVP KW - Gene five protein KW - Hydroxyectoine KW - Ionizing radiation damage KW - OH radical scavenger KW - Monte-Carlo simulations KW - Nanodosimetry KW - Osmolyte KW - Particle scattering simulations KW - Protein unfolding KW - Radical Scavenge KW - Radical scavenger KW - Single-stranded DNA-binding proteins KW - SAXS KW - Bio-SAXS KW - X-ray scattering KW - ssDNA KW - dsDNA KW - FLASH effect KW - Bystander effect KW - Ion beam therapy KW - Bragg peak KW - LET KW - MCNP KW - Photons KW - Electrons KW - Carbon ions KW - MRT KW - RNA KW - RBE KW - base loss KW - abasic side KW - DMSO KW - Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573240 DO - https://doi.org/10.1088/2399-6528/accb3f SN - 2399-6528 VL - 7 IS - 4 SP - 042001 PB - Institute of Physics (IOP) Publishing CY - London AN - OPUS4-57324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Rajadurai, A. A1 - Redmond, R.W. A1 - Kneipp, K. T1 - Optical probing and imaging of live cells using SERS labels JF - Journal of raman spectroscopy N2 - During surface-enhanced Raman scattering (SERS), molecules exhibit a significant increase in their Raman signals when attached, or in very close vicinity, to gold or silver nanostructures. This effect is exploited as the basis of a new class of optical labels. Here we demonstrate robust and sensitive SERS labels as probes for imaging live cells. These hybrid labels consist of gold nanoparticles with Rose Bengal or Crystal Violet attached as reporter molecules. These new labels are stable and nontoxic, do not suffer from photobleaching, and can be excited at any excitation wavelength, even in the near infrared. SERS labels can be detected and imaged through the specific Raman signatures of the reporters. In addition, surface-enhanced Raman spectroscopy in the local optical fields of the gold nanoparticles also provides sensitive information on the immediate molecular environment of the label in the cell and allows imaging of the native constituents of the cell. This is demonstrated by images based on a characteristic Raman line of the reporter as well as by displaying lipids based on the SERS signal of the C—H deformation/bending modes at ~ 1470 cm-1. KW - Surface-enhanced Raman scattering KW - Gold nanoparticles KW - Cells KW - SERS imaging PY - 2008 DO - https://doi.org/10.1002/jrs.2060 SN - 0377-0486 SN - 1097-4555 IS - -Early View- SP - 1 EP - 5 PB - Wiley CY - Chichester AN - OPUS4-18232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Wittig, B. A1 - Kneipp, K. T1 - Novel optical nanosensors for probing and imaging live cells JF - Nanomedicine / Nanotechnology, biology and medicine N2 - This review introduces multifunctional optical nanosensors based on surface-enhanced Raman scattering (SERS) and demonstrates their application in live cells. The novel nanosensors have the potential to improve our understanding of cellular processes on the molecular level. The hybrid sensor consists of gold or silver nanoparticles with an attached reporter species. The sensor can be detected and imaged based on the SERS signature of the reporter. This results in several advantages, such as high spectral specificity, multiplex capabilities, improved contrast, and photostability. SERS sensors not only highlight cellular structures, based on enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the gold nanoparticles, they also provide molecular structural information on their cellular environment. Moreover, the SERS signature of the reporter can deliver information on the local pH value inside a cell at subendosomal resolution. SERS sensors are suitable for one- and two-photon excitation. KW - Cells KW - Optical nanosensors KW - Nano gold KW - Spectroscopy KW - SERS KW - ph probing PY - 2010 DO - https://doi.org/10.1016/j.nano.2009.07.009 SN - 1549-9634 SN - 1549-9642 VL - 6 IS - 2 SP - 214 EP - 226 PB - Elsevier CY - New York AN - OPUS4-23943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Wittig, B. A1 - Bohr, H. A1 - Kneipp, Janina T1 - Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine JF - Theoretical chemistry accounts N2 - Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and biomedical research. Raman spectroscopy can be revolutionized when the inelastic scattering process takes place in the very close vicinity of metal nanostructures. Under these conditions, strongly increased Raman signals can be obtained due to resonances between optical fields and the collective oscillations of the free electrons in the metal. This effect of surface-enhanced Raman scattering (SERS) allows us to push vibrational spectroscopy to new limits in detection sensitivity, lateral resolution, and molecular structural selectivity. This opens up exciting perspectives also in molecular biospectroscopy. This article highlights three directions where SERS can offer interesting new capabilities. This includes SERS as a technique for detecting and tracking a single molecule, a SERS-based nanosensor for probing the chemical composition and the pH value in a live cell, and the effect of socalled surface-enhanced Raman optical activity, which provides information on the chiral organization of molecules on surfaces. KW - Nanosensor KW - Raman spectroscopy KW - Cells KW - Single molecule KW - Plasmonics PY - 2010 DO - https://doi.org/10.1007/s00214-009-0665-2 SN - 1432-881X VL - 125 IS - 3-6 SP - 319 EP - 327 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-23213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, P. A1 - Markötter, H. A1 - Klages, M. A1 - Haußmann, J. A1 - Arlt, Tobias A1 - Riesemeier, Heinrich A1 - Hartnig, C. A1 - Banhart, J. A1 - Manke, I. A1 - Scholta, J. T1 - Dreidimensionale Untersuchung der Wasserverteilung in einer Miniatur-PEM-Brennstoffzelle JF - MP materials testing KW - Resolution neutron-radiography KW - Local current distribution KW - Cells KW - Quantification PY - 2010 SN - 0025-5300 VL - 52 IS - 10 SP - 712 EP - 717 PB - Hanser CY - München AN - OPUS4-23044 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging JF - Journal of Analytical Atomic Spectrometry N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zancajo, V. M. R. A1 - Lindtner, T. A1 - Eisele, M. A1 - Huber, A. J. A1 - Elbaum, R. A1 - Kneipp, Janina T1 - FTIR Nanospectroscopy Shows Molecular Structures of Plant Biominerals and Cell Walls JF - Analytical Chemistry N2 - Plant tissues are complex composite structures of organic and inorganic components whose function relies on molecular heterogeneity at the nanometer scale. Scattering-type near-field optical microscopy (s-SNOM) in the mid-infrared (IR) region is used here to collect IR nanospectra from both fixed and native plant samples. We compared structures of chemically extracted silica bodies (phytoliths) to silicified and nonsilicified cell walls prepared as a flat block of epoxy-embedded awns of wheat (Triticum turgidum), thin sections of native epidermis cells from sorghum (Sorghum bicolor) comprising silica phytoliths, and isolated cells from awns of oats (Avena sterilis). The correlation of the scanning-probe IR images and the mechanical phase image enables a combined probing of mechanical material properties together with the chemical composition and structure of both the cell walls and the phytolith structures. The data reveal a structural heterogeneity of the different silica bodies in situ, as well as different compositions and crystallinities of cell wall components. In conclusion, IR nanospectroscopy is suggested as an ideal tool for studies of native plant materials of varied origins and preparations and could be applied to other inorganic–organic hybrid materials. KW - Cells KW - Plants KW - Organic polymers KW - Silica KW - Infrared light PY - 2020 DO - https://doi.org/10.1021/acs.analchem.0c00271 SN - 0003-2700 VL - 92 IS - 20 SP - 13694 EP - 13701 PB - ACS Publications AN - OPUS4-54445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziesche, R. F. A1 - Robinson, J. B. A1 - Markötter, Henning A1 - Bradbury, R. A1 - Tengattini, A. A1 - Lenoir, N. A1 - Helfen, L. A1 - Kockelmann, W. A1 - Kardjilov, N. A1 - Manke, I. A1 - Brett, D. J. L. A1 - Shearing, P. R. T1 - Editors’ Choice—4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part II. Multi-Modal Microscopy of LiSOCl2 Cells JF - Journal of the Electrochemical Society N2 - The ability to track electrode degradation, both spatially and temporally, is fundamental to understand performance loss during operation of lithium batteries. X-ray computed tomography can be used to follow structural and morphological changes in electrodes; however, the direct detection of electrochemical processes related to metallic lithium is difficult due to the low sensitivity to the element. In this work, 4-dimensional neutron computed tomography, which shows high contrast for lithium, is used to directly quantify the lithium diffusion process in spirally wound Li/SOCl2 primary cells. The neutron dataset enables the quantification of the lithium transport from the anode and the accumulation inside the SOCl2 cathode to be locally resolved. Complementarity between the collected neutron and X-ray computed tomographies is shown and by applying both methods in concert we have observed lithium diffusion blocking by the LiCl protection layer and identified all cell components which are difficult to distinguish using one of the methods alone. KW - Lithium-ion battery KW - Room-temperature KW - Thermal runaway KW - Gas evolution KW - Cells PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520890 DO - https://doi.org/10.1149/1945-7111/abbfd9 VL - 167 SP - 140509 PB - IOP Science AN - OPUS4-52089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -