TY - JOUR A1 - Schreier, Andy A1 - Liehr, Sascha A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Investigation on the influence of humidity on stimulated Brillouin backscattering in perfluorinated polymer optical fibers JF - Sensors N2 - In this paper perfluorinated graded-index polymer optical fibers are characterized with respect to the influence of relative humidity changes on spectral transmission absorption and Rayleigh backscattering. The hygroscopic and thermal expansion coefficient of the fiber are determined to be CHE = (7.4 +/- 0.1) 10^-6 %r.h.^-1 and CTE = (22.7 +/- 0.3) 10^-6 K^-1, respectively. The influence of humidity on the Brillouin backscattering power and linewidth are presented for the first time to our knowledge. The Brillouin backscattering power at a pump wavelength of 1319 nm is affected by temperature and humidity. The Brillouin linewidth is observed to be a function of temperature but not of humidity. The strain coefficient of the BFS is determined to be CS = (146.5 +/- 0.9) MHz/% for a wavelength of 1319 nm within a strain range from 0.1 % to 1.5 %. The obtained results demonstrate that the humidity-induced Brillouin frequency shift is predominantly caused by the swelling of the fiber over-cladding that leads to fiber straining. KW - Brillouin KW - Polymer optical fibre KW - Humidity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465932 DO - https://doi.org/10.3390/s18113952 SN - 1424-8220 VL - 18 IS - 11 SP - 3952, 1 EP - 12 PB - MDPI CY - Basel, Switzerland AN - OPUS4-46593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreier, Andy A1 - Wosniok, Aleksander A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - Humidity-induced Brillouin frequency shift in perfluorinated polymer optical fibers JF - Optics Express N2 - We report, to our knowledge, for the first time on humidity-induced Brillouin frequency shifts in perfluorinated graded index polymer optical fibers. A linear relation between Brillouin frequency shift and humidity was observed. Furthermore, the humidity coefficient of the Brillouin frequency shift is demonstrated to be a function of temperature (-107 to -64 kHz/%r.h. or -426 to -49 kHz m3/g in the range of 20 to 60 °C). An analytical description proves temperature and humidity as two mutually independent effects on the Brillouin frequency shift. KW - Brillouin KW - Polymer optical fibre KW - Humidity PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457165 DO - https://doi.org/10.1364/OE.26.022307 SN - 1094-4087 VL - 26 IS - 17 SP - 22307 EP - 22314 PB - Optical Society of America AN - OPUS4-45716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -