TY - JOUR A1 - Brehme, Sven A1 - Köppl, T. A1 - Schartel, Bernhard A1 - Fischer, O. A1 - Altstädt, V. A1 - Pospiech, D. A1 - Döring, M. T1 - Phosphorus polyester - an alternative to low-molecular-weight flame retardants in poly(butylene terephthalate)? JF - Macromolecular chemistry and physics N2 - Pyrolysis, fire behaviour and mechanical properties of a blend of poly(butylene terephthalate) (PBT) with a phosphorus polyester (PET-P-DOPO) are investigated and compared with PBT/aluminium diethylphosphinate (AlPi-Et) composites. The PBT/PET-P-DOPO is immiscible and exhibits gas-phase and condensed-phase activity, whereas AlPi-Et in PBT results mainly in flame inhibition. Only higher loadings of AlPi-Et yield significant condensed-phase activity. Using the same phosphorus content, PBT/PET-P-DOPO and PBT/AlPi-Et exhibit similar reductions in fire load (22%) and flame spread (17% assessed by fire growth rate, FIGRA), compared with PBT. In contrast to AlPi-Et, the addition of PET-P-DOPO does not decrease the tensile strength of PBT. Thus, PET-P-DOPO is an interesting alternative to low-molecular-weight flame retardants. KW - Aluminium phosphinate KW - Blends KW - 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide KW - Flame retardance KW - Polyesters PY - 2012 DO - https://doi.org/10.1002/macp.201200072 SN - 1022-1352 SN - 1521-3935 VL - 213 IS - 22 SP - 2386 EP - 2397 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppl, T. A1 - Brehme, Sven A1 - Pospiech, D. A1 - Fischer, O. A1 - Wolff-Fabris, F. A1 - Altstädt, V. A1 - Schartel, Bernhard A1 - Döring, M. T1 - Influence of polymeric flame retardants based on phosphorus-containing polyesters on morphology and material characteristics of poly(butylene terephthalate) JF - Journal of applied polymer science N2 - Flame retarded poly(butylene terephthalate) (PBT) is required for electronic applications and is mostly achieved by low molar mass additives so far. Three phosphorus-containing polyesters are suggested as halogen-free and polymeric flame retardants for PBT. Flame retardancy was achieved according to cone calorimeter experiments showing that the peak heat release rate and total heat evolved were reduced because of flame inhibition and condensed-phase activity. The presented polymers containing derivatives of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide form immiscible blend systems with PBT. Shear-rheology shows an increase in storage moduli at low frequencies. This is proposed as quantitative measure for the degree of phase interaction. The phase structure of the blends depends on the chemical structure of the phosphorus polyester and was quite different, depending also on the viscosity ratio between matrix and second phase. A lower viscosity ratio leads to two types of phases with spherical and additionally continuous droplets. Addition of the flame retardants showed no influence on the dielectric properties but on the mechanical behavior. The polymeric flame retardants significantly diminish the impact strength because of several reasons: (1) high brittleness of the phosphorus polyesters themselves, (2) thermodynamic immiscibility, and (3) weak phase adhesion. By adding a copolymer consisting of the two base polymers to the blend, an improvement of impact strength was obtained. The copolymer particularly acts as compatibilizer between the phases and therefore leads to a smaller phase size and to a stronger phase adhesion due to the formation of fibrils. KW - Polyesters KW - Blends KW - Miscibility KW - Rheology KW - Flame retardance PY - 2013 DO - https://doi.org/10.1002/app.38520 SN - 0021-8995 SN - 1097-4628 VL - 128 IS - 5 SP - 3315 EP - 3324 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-27957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - Diffusive burning of blended peroxy-fuels: Some experimental results JF - Fuel processing technology N2 - Dampening of energetic properties and the effects of blending proportions of isododecane on the diffusive burning behaviour of peroxy-fuels are experimentally studied. Blended peorxy-fuels are obtained by adding isododecane in the proportions of 25 wt.%, 50 wt.% and 75 wt.%, respectively, in technical pure peroxy-fuels. The fuels were burned in form of pool fires with diameters 0.02 m ≤ d ≤ 1 m. The mass burning rates and relative flame lengths are found to be weakened with increasing diluent proportions. By measuring the mass burning rates and visible flame lengths of pool fires of different samples of fuel blends an optimum blending criterion is developed. Furthermore, it is shown that the dilution proportions and flame characteristics can be correlated by empirical equations. KW - Peroxy-fuels KW - Blends KW - Isododecan KW - Pool fire KW - Mass burning rate KW - Flame length PY - 2015 DO - https://doi.org/10.1016/j.fuproc.2015.06.014 SN - 0016-2361 SN - 0378-3820 SN - 1873-7153 VL - 140 SP - 324 EP - 330 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H. R. T1 - Matrix-assisted laser desorption/ionization behavior of neat linear and cyclic poly(L-lactide)s and their blends JF - Rapid Communications in Mass Spectrometry N2 - Numerous new tin catalysts that enable the synthesis of cyclic polylactides with broad variation in their molecular mass were recently developed. The abundance of cyclics in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectra is, however, frequently reported to greatly exceed that of linears. Thus, the MALDI ionization behavior of various end-capped linear poly(L-lactide)s and one cyclic poly(L-lactide) was investigated and compared. Neat compounds and various blends of cyclic and linear species were prepared and studied under identical conditions with regard to sample preparation and instrumental condition, except for the laser power. For this purpose, two different MALDI-TOF mass spectrometers were applied. Our results reveal that cyclics indeed show a slightly better ionization in MALDI, although their ionization as a neat compound seems to be less effective than that of linear polylactides. The ionization of most linear polylactides investigated does not depend on the end group structure. However, linear polylactides containing 12-bromododecyl end groups reveal an unexpected saturation effect that is not caused by fragmentation of the polymer or the end group, or by electronic saturation of the detector digitizer. Furthermore, polylactides with a 2-bromoethyl end group did not show such a saturation effect. An overestimation of cyclic species in MALDI-TOF mass spectra of poly(L-lactide)s must be considered, but the commonly assumed peak suppression of linear polymers in mixtures of both structures can be excluded. KW - Polylactide KW - MALDI-TOF MS KW - Blends KW - Ionization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504216 DO - https://doi.org/10.1002/rcm.8673 VL - 34 SP - e8673 PB - Wiley Online Libary AN - OPUS4-50421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Schultze, R.-D. A1 - Enthaler, B. T1 - Matrix-assisted laser desorption/ionization imaging mass spectrometry of pollen grains and their mixtures JF - Rapid communications in mass spectrometry N2 - RATIONALE The fast and univocal identification of different species in mixtures of pollen grains is still a challenge. Apart from microscopic evaluation and Raman spectroscopy, no other techniques are available. METHODS Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry was applied to the analysis of extracts of single pollen grains and pollen mixtures. Pollen grains were fixed, treated and covered with matrix directly on the MALDI target. RESULTS Clearly resolved MALDI ion intensity images could be obtained enabling the identification of single pollen grains in a mixture. CONCLUSIONS Our results demonstrate the potential and the suitability of MALDI imaging mass spectrometry as an additional method for the identification of pollen mixtures. KW - MALDI KW - Imaging KW - Pollen KW - Blends PY - 2013 DO - https://doi.org/10.1002/rcm.6523 SN - 0951-4198 SN - 1097-0231 VL - 27 IS - 8 SP - 896 EP - 903 PB - Wiley CY - Chichester AN - OPUS4-27986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -