TY - JOUR A1 - Schmalenberger, A. A1 - Pritzkow, Wolfgang A1 - Ojeda, J.J. A1 - Noll, Matthias T1 - Characterization of main sulfur source of wood-degrading basidiomycetes by S K-edge X-ray absorption near edge spectroscopy (XANES) JF - International biodeterioration & biodegradation N2 - The main wood degraders in aerobic terrestrial ecosystems belong to the white- and brown-rot fungi, where their biomass can be created on wood decay only. However, total sulfur (S) concentration in wood is very low and only little is known about the different sulfur compounds in wood today. Sulfur-starved brown-rot fungi Gloeophyllum trabeum and Oligoporus placenta were incubated on sterilized pine wood blocks whereas Lentinus cyathiformis and the white-rot fungi Trametes versicolor were incubated on sterilized beech wood blocks. After 19 weeks of incubation, the S oxidation status was analyzed in wood, in degraded wood, and in biomass of wood-degrading fungi by synchrotron based S K-edge XANES, and total S and sulfate were quantified. Total sulfur and sulfate content in pine wood blocks were approximately 50 and 1 µg g-1, respectively, while in beech wood approximately 100 and 20 µg g-1 were found, respectively. Sulfur in beech was dominated by sulfate-esters. In contrast, pine wood also contained larger amounts of reduced S. Three out of four selected fungi caused a reduction of the S oxidation state in wood from oxidized S (sulfate-ester, sulfate) to intermediate S (sulfonate, sulfoxide) or reduced S (thiols, e.g., proteins, peptides, enzyme cofactors). Only O. placenta shifted thiol to sulfonate. Growth experiments of these fungi on selective minimal media showed that in particular cysteine (thiol), sulfonates, and sulfate enhanced total mycelium growth. Consequently, wood-degrading fungi were able to utilize a large variety of different wood S sources for growth but preferentially transformed in vivo sulfate-esters and thiol into biomass structures. KW - Basidiomycetes KW - Fungi KW - S K-edge X-ray absorption near edge spectroscopy (XANES) KW - Sulfur oxidation status KW - Sulfate-esters PY - 2011 DO - https://doi.org/10.1016/j.ibiod.2011.08.013 SN - 0964-8305 VL - 65 IS - 8 SP - 1215 EP - 1223 PB - Elsevier CY - Barking AN - OPUS4-27546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, S. A1 - Voss, L. A1 - Stephan, Ina A1 - Hübert, Thomas A1 - Kemnitz, E. T1 - Improved Durability of Wood Treated with Nano Metal Fluorides against Brown-Rot and White-Rot Fungi JF - Applied Sciences N2 - Low-water soluble metal fluorides such as magnesium fluoride (MgF2) and calcium Fluoride (CaF2) were evaluated for decay protection of wood. Initially, the biocidal efficacy of nano metal fluorides (NMFs) against wood destroying fungi was assessed with an in-vitro agar test. The results from the test showed that agar medium containing MgF2 and CaF2 was more efficient in preventing fungal decay than stand-alone MgF2 or CaF2. These metal fluorides, in their nanoscopic form synthesized using fluorolytic sol-gel synthesis, were introduced into the sapwood of Scots pine and beech wood and then subjected to accelerated ageing by leaching (EN 84). MAS 19F NMR and X-ray micro CT images showed that metal fluorides were present in treated wood, unleached and leached. Decay resistance of Scots pine and beech wood treated with NMFs was tested against Wood destroying fungi Rhodonia placenta and Trametes versicolor in accordance with EN 113. Results revealed that mass losses were reduced to below 3% in wood treated with the combination of MgF2 and CaF2. It is concluded that NMFs provide full protection to wood even after it has been leached and can be used as wood preservatives in outdoor environments. KW - Nanoparticles KW - Fluoride KW - Wood protection KW - Fluorolytic sol-gel synthesis KW - Brown-rot fungi KW - White-rot fungi KW - Basidiomycetes PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543877 DO - https://doi.org/10.3390/app12031727 VL - 12 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weißhaupt, Petra A1 - Pritzkow, Wolfgang A1 - Noll, Matthias T1 - Nitrogen sources of oligoporus placenta and trametes versicolor evaluated in a 2³ experimental plan JF - Fungal biology N2 - Four full-factorial 2³ experimental plans were applied to evaluate the nitrogen (N) sources of Oligoporus placenta and Trametes versicolor and their interaction with the atmospheric N2-assimilating bacterium Beijerinckia acida. The effects of N from peptone, of sapwood and of N from gaseous N2 on fungal, bacterial and fungal–bacterial activity were investigated. The activities were determined by quantification of biomass, formation of CO2, consumption of O2 and laccase activity. The significance of each effect was tested according to t-test recommendation. The activity of both fungi was enhanced by peptone rather than sapwood or gaseous N2. Nevertheless, comparative studies under an N2-free gas mixture as well as under air revealed that the presence of N2 affected bacterial growth and bacterial–fungal cocultivations. Elemental analysis isotope ratio mass spectrometry (IRMS) of the bacterial and fungal biomass enabled estimation of N transfer and underlined gaseous N2 as requisite for fungal–bacterial interactions. Combining full-factorial experimental plans with an analytical set-up comprising gas chromatography, IRMS and enzymatic activity allowed synergistic effects to be revealed, fungal N sources to be traced, and symbiotic fungal–bacterial interactions to be investigated. KW - Basidiomycetes KW - Diazotroph KW - Full-factorial experimental plan KW - Fungal–bacterial interaction KW - Nitrogen KW - Wood decomposition PY - 2012 DO - https://doi.org/10.1016/j.funbio.2011.10.002 SN - 1878-6146 SN - 1878-6162 VL - 116 IS - 1 SP - 81 EP - 89 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -