TY - JOUR A1 - Agea Blanco, Boris A1 - Walzel, S. A1 - Chi, J. A1 - Lüchtenborg, J. T1 - Making Binder Jetting Really Work for Technical Ceramics - Additive Manufacturing of Technical Ceramics N2 - As an alternative shaping method to the traditionally used processes, additive manufacturing (AM) can produce economical ceramic components in small lot sizes and/or with complex geometries. Powder-based additive manufacturing processes like binder jetting are popular in the field of metal AM. One reason is the increased productivity compared to other AM technologies. For ceramic materials, powder-based AM technologies result in porous ceramic parts, provided they are not infiltrated. CerAMing GmbH unites the advantages of powder-based processes with the production of dense ceramic by means of the Layerwise Slurry Deposition. By using a suspension, a high packing density of the powder bed is achieved which leads to high green body densities. Due to this advantage the approach overcomes the problems of other powder-based AM technologies. Furthermore, a very economical debinding time allows the production of parts with high wall thicknesses. KW - Additive Manufacturing KW - Binder Jetting KW - Layerwise Slurry Deposition KW - Lithography-based technologies KW - Technical Ceramics PY - 2021 SP - 49 EP - 52 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-52948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516318 DO - https://doi.org/10.1080/17686733.2020.1829889 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Tina A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Breese, Philipp Peter A1 - Metz, C. A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - In-situ monitoring of the Laser Powder Bed Fusion build process via bi- chromatic optical tomography N2 - As metal additive manufacturing (AM) is entering industrial serial production of safety relevant components, the need for reliable process qualification is growing continuously. Especially in strictly regulated industries, such as aviation, the use of AM is strongly dependent on ensuring consistent quality of components. Because of its numerous influencing factors, up to now, the metal AM process is not fully controllable. Today, expensive part qualification processes for each single component are common in industry. This contribution focusses on bi-chromatic optical tomography as a new approach for AM in-situ quality control. In contrast to classical optical tomography, the emitted process radiation is monitored simultaneously with two temperature calibrated cameras at two separate wavelength bands. This approach allows one to estimate the local maximum temperatures during the manufacturing process, thus increases the comparability of monitoring data of different processes. A new process information level at low investment cost is reachable, compared to, e.g., infrared thermography. T2 - LANE 2022 CY - Fürth, Germany DA - 04.08.2022 KW - Optical tomography KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560270 DO - https://doi.org/10.1016/j.procir.2022.08.035 SN - 2212-8271 VL - 111 SP - 340 EP - 344 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breese, Philipp Peter A1 - Altenburg, Simon T1 - Absolute temperature determination in laser powder bed fusion (PBF-LB/M) via hyperspectral thermography N2 - Temperature is a key characteristic in laser powder bed fusion of metals (PBF-LB/M). As a quantitative physical property, the temperature can determine the actual process quality independently from the nominal process parameters. Thus, establishing a process evaluation on temperatures rather than the comparison of process conditions is expected to be more effective. However, quantitative in situ temperature measurements with classical thermographic methods are virtually impossible. The reason is that the required emissivity value changes drastically throughout the process. Additionally, large temperature ranges along with the highly dynamic nature of the PBF-LB/M process make temperature measurements difficult. Based on this challenge, this work presents a method for hyperspectral temperature determination. The spectral exitance (in W/m2⋅nm) was measured in situ at many adjacent wavelengths in the short-wave infrared (SWIR). This enabled a local temperature determination via Planck’s law in combination with a spectral emissivity function. The temperature field of the melt pool crossing the 1D measurement line was reconstructed from the information, gathered at nearly 20 kHz sampling rate. The reconstructed melt pool had a spatial resolution of 17 µm by 40 µm, and temperatures between 2700 and 1300 K were observable. Comparison of the 316L stainless steel solidification temperature and the observed solidification plateau in the gathered thermal data revealed a relative error of less than 6% in the absolute temperature measurement. These initial results of hyperspectral temperature determination in PBF-LB/M show the potential in the method. It allows for physically founded process evaluation, and the prospects for tuning and validation of numerical simulations are highly promising. KW - Additive Manufacturing KW - Infrared Thermography KW - In-situ Monitoring KW - Quantitative Temperature Measurement KW - Emissivity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631977 DO - https://doi.org/10.1007/s40964-025-01148-8 SN - 2363-9512 SP - 1 EP - 10 PB - Springer Science and Business Media LLC AN - OPUS4-63197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Maierhofer, Christiane T1 - Advanced Characterization and On-Line Process Monitoring of Additively Manufactured Materials and Components N2 - Additive manufacturing (AM) techniques have risen to prominence in many industrial sectors. This rapid success of AM is due to the freeform design, which offers enormous possibilities to the engineer, and to the reduction of waste material, which has both environmental and economic advantages. Even safety-critical parts are now being produced using AM. This enthusiastic penetration of AM in our daily life is not yet paralleled by a thorough characterization and understanding of the microstructure of materials and of the internal stresses of parts. The same holds for the understanding of the formation of defects during manufacturing. While simulation efforts are sprouting and some experimental techniques for on-line monitoring are available, still little is known about the propagation of defects throughout the life of a component (from powder to operando/service conditions). This Issue was aimed at collecting contributions about the advanced characterization of AM materials and components (especially at large-scale experimental facilities such as Synchrotron and Neutron sources), as well as efforts to liaise on-line process monitoring to the final product, and even to the component during operation. The goal was to give an overview of advances in the understanding of the impacts of microstructure and defects on component performance and life at several length scales of both defects and parts. KW - Non-destructive Testing KW - Additive Manufacturing KW - Materials Characterization KW - Online Monitoring KW - Residual Stress KW - Thermography KW - Computed Tomography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556833 DO - https://doi.org/10.3390/met12091498 VL - 12 IS - 9 SP - 1 EP - 3 PB - MDPI CY - Basel, Schweiz AN - OPUS4-55683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaurasia, Prashant Kumar A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - De, Amitava A1 - Rethmeier, Michael T1 - Automated in situ monitoring and analysis of process signatures and build profiles during wire arc directed energy deposition N2 - Wire arc directed energy deposition (DED-Arc) is an emerging metal additive manufacturing process to build near-net shaped metallic parts in a layer-by-layer with minimal material wastage. Automated in situ monitoring and fast-responsive analyses of process signatures and deposit profiles during DED-Arc are in ever demand to print dimensionally consistent parts and reduce post-deposition machining. A comprehensive experimental investigation is presented here involving real-time synchronous measurement of arc current, voltage, and the deposit profile using a novel multi-sensor monitoring framework integrated with the DED-Arc set-up. The recorded current–voltage transients are used to estimate the time-averaged arc power, and energy input in real time for an insight of the influence of wire feed rate and printing travel speed on the deposit characteristics. A unique attempt is made to represent the geometric profiles of the single-track deposits in a generalized mathematical form corresponding to a segmented ellipse, which has exhibited the minimum root-mean-square error of 0.03 mm. The dimensional inconsistency of multi-track deposits is evaluated quantitatively in terms of waviness using build profile monitoring and automated estimation, which is found to increase with an increase in step-over ratio and energy input. For the multi-track mild steel deposits, the suitable range of step-over ratio for the minimum surface waviness is observed to lie between 0.6 and 0.65. Collectively, the proposed framework of synchronized process monitoring and real-time analysis provides a pathway to achieve dimensionally consistent and defect-free parts, and highlights the potential for closed-loop control systems for a wider industrial application of DED-Arc. KW - Additive Manufacturing KW - Arc welding KW - DED-arc KW - Real-time monitoring and control KW - Dimensional inconsistency PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642029 DO - https://doi.org/10.1007/s40964-025-01333-9 SN - 2363-9512 SP - 1 EP - 20 PB - Springer Science and Business Media LLC CY - Cham AN - OPUS4-64202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, J. A1 - Agea Blanco, B. A1 - Bruno, Giovanni A1 - Günster, Jens A1 - Zocca, Andrea T1 - Self-Organization Postprocess for Additive Manufacturingin Producing Advanced Functional Structure and Material N2 - Additive manufacturing (AM) is developing rapidly due to itsflexibility in producing complex geometries and tailored material compositions. However, AM processes are characterized by intrinsic limitations concerning their resolution and surface finish, which are related to the layer-by-layer stacking process. Herein, a self-organization process is promoted as an approach to improve surface quality and achieve optimization of 3D minimal surface lightweight structures. The self-organization is activated after the powder bed 3D printing process via local melting, thereby allowing surface tension-driven viscous flow.The surface roughness Ra (arithmetic average of the roughness profile) could bedecreased by a factor of 1000 and transparent lenses and complex gyroid structures could be produced for demonstration. The concept of self-organization is further elaborated by incorporating external magnetic fields to intentionally manipulate magnetic particles, which are mixed with the polymer before printing and self-organization. This concept can be applied to develop programmable materials with specific microtextures responding to the external physical conditions. KW - Additive Manufacturing KW - Self-organization KW - Triply Periodical Minimal Surface PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540588 DO - https://doi.org/10.1002/adem.202101262 VL - 24 IS - 6 SP - 1 EP - 8 PB - Wiley VCH AN - OPUS4-54058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chi, Jinchun A1 - Zocca, Andrea A1 - Agea Blanco, Boris A1 - Melcher, J. A1 - Sparenberg, M. A1 - Günster, Jens T1 - 3D Printing of Self-Organizing Structural Elements for Advanced Functional Structures N2 - A shape evolution approach based on the thermally activated self-organization of 3D printed parts into minimal surface area structures is presented. With this strategy, the present communication opposes currently established additive manufacturing strategies aiming to stipulate each individual volumetric element (voxel) of a part. Instead, a 3D structure is roughly defined in a 3D printing process, with all its advantages, and an externally triggered self-organization allows the formation of structural elements with a definition greatly exceeding the volumetric resolution of the printing process. For enabling the self-organization of printed objects by viscous flow of material, functionally graded structures are printed as rigid frame and melting filler. This approach uniquely combines the freedom in design, provided by 3D printing, with the mathematical formulation of minimal surface structures and the knowledge of the physical potentials governing self-organization, to overcome the paradigm which strictly orrelates the geometrical definition of 3D printed parts to the volumetric resolution of the printing process. Moreover, a transient liquid phase allows local programming of functionalities, such as the alignment of functional particles, by means of electric or magnetic fields. KW - Additive Manufacturing KW - Self-Assembly KW - 3D-Printing KW - Polymeric Materials PY - 2018 DO - https://doi.org/10.1002/admt.201800003 SN - 2365-709X VL - 3 IS - 5 SP - 1800003-1 EP - 1800003-7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-45714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinellato, Fabio A1 - Wilbig, Janka A1 - Al-Sabbagh, Dominik A1 - Colombo, P. A1 - Günster, Jens T1 - Gas flow assisted powder deposition for enhanced flowability of fine powders: 3D printing of alpha-tricalcium phosphate N2 - The possibility of creating patient-specific individual implants makes Additive Manufacturing technologies of special interest for the medical sector. For substitution of bone defects, powder based Additive Manufacturing by Binder Jetting is a suitable method to produce complex scaffold-like structures made of bioceramics with easily adapted geometries and controlled porosity. The process inherent residual porosity in the printed part, even though desired as it supports bone ingrowth, also leads to limited mechanical strength. Currently, bioceramic scaffolds made by Binder Jetting feature suitable biocompatible and biodegradable properties, while a sufficient mechanical stability is rather challenging. The purpose of this work is to apply the gas flow assisted powder deposition introduced in 2014 by Zocca et al., to the powder bed during printing of bioceramic tablets and scaffolds using α-TCP powder as feedstock. This enables exploiting the advantages of an increased powder bed density, thereby improving the mechanical properties of the printed parts. KW - Additive Manufacturing KW - Binder Jetting KW - Gas flow assisted powder deposition KW - Alpha-tricalcium phosphate KW - Scaffold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510138 DO - https://doi.org/10.1016/j.oceram.2020.100003 SN - 2666-5395 VL - 1 SP - 100003 PB - Elsevier Ltd. AN - OPUS4-51013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - D'Accardi, E. A1 - Krankenhagen, Rainer A1 - Ulbricht, Alexander A1 - Pelkner, Matthias A1 - Pohl, Rainer A1 - Palumbo, D. A1 - Galietti, U. T1 - Capability to detect and localize typical defects of laser powder bed fusion (L‑PBF) process: an experimental investigation with different non‑destructive techniques N2 - Additive manufacturing (AM) technologies, generally called 3D printing, are widely used because their use provides a high added value in manufacturing complex-shaped components and objects. Defects may occur within the components at different time of manufacturing, and in this regard, non-destructive techniques (NDT) represent a key tool for the quality control of AM components in many industrial fields, such as aerospace, oil and gas, and power industries. In this work, the capability of active thermography and eddy current techniques to detect real imposed defects that are representative of the laser powder bed fusion process has been investigated. A 3D complex shape of defects was revealed by a μCT investigation used as reference results for the other NDT methods. The study was focused on two different types of defects: porosities generated in keyhole mode as well as in lack of fusion mode. Different thermographic and eddy current measurements were carried out on AM samples, providing the capability to detect volumetric irregularly shaped defects using non-destructive methods. KW - Additive Manufacturing KW - Defect detection KW - Thermography KW - Eddy-current testing KW - Micro-computed tomography PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546680 DO - https://doi.org/10.1007/s40964-022-00297-4 SN - 2363-9512 VL - 7 IS - 6 SP - 1239 EP - 1256 PB - Springer AN - OPUS4-54668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -