TY - JOUR A1 - Bajer, Kamila A1 - Braun, Ulrike T1 - Different aspects of the accelerated oxidation of polypropylene at increased pressure in an autoclave with regard to temperature, pretreatment and exposure media JF - Polymer testing N2 - The aim of this study is to investigate and compare three different factors, temperature, pretreatment and exposure media, on the oxidation and aging behavior of polypropylene (PP) bulk samples in the autoclave test under increased oxygen pressure. The aging of polypropylene, in this case syringe material, was accelerated under different conditions. The samples were aged at 75°, 80° and 85 °C under pure oxygen and at 75 °C under ultrapure water. Further samples treated with 15 kGy (e-beam) were aged at 75 °C under pure oxygen. All experiments were carried out at an oxygen partial pressure of 50 bar. The different courses of aging were evaluated and compared. Color and transparency were used to assess the visual changes; weight, geometry and tensile test for the changes in technical properties; and DSC, FTIR and TDS-GC-MS to improve our physico-chemical understanding of the aging processes. The investigations showed that all factors tested influence oxidation/aging behaviour. Dry or wet exposure has no effect on aging during the induction time. However, after the point of maximum service time the degradation process of polymer changes significantly in the presence of water. The increase of aging temperature decreases the maximum service time; however a temperature higher than 80 °C changes the relative ratio of surface and bulk oxidation. The pretreatment with irradiation decreases the maximum service time further, because the irradiation partly damages the antioxidant, and the mobility of antioxidant fragments inside the polymer changes. These diffusion effects influence the relative ratio of bulk and surface oxidation of the polymer sample. KW - Autoclave test KW - Accelerated aging KW - Polypropylene KW - Electron radiation PY - 2014 DO - https://doi.org/10.1016/j.polymertesting.2014.05.006 SN - 0142-9418 VL - 37 SP - 102 EP - 111 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-30867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Falkenhagen, Jana A1 - Wachtendorf, Volker A1 - Brüll, Robert A1 - Simon, Franz-Georg T1 - Investigation on the Durability of a Polypropylene Geotextile under Artificial Aging Scenarios JF - Sustainability N2 - Geosynthetics are widely used in various civil engineering applications, such as geotextiles in coastal protection, and display a sustainable alternative to natural mineral materials. However, the full benefits of using geosynthetics can only be gained with a long service lifetime of the products. With the use of added stabilizers to the polymers, service lifetimes can be achieved in the range of 100 years. Therefore, accelerated aging methods are needed for the assessment of the long-term performance of geotextiles. In the present study, the behavior of geosynthetic materials made of polypropylene was investigated under artificial aging conditions involving elevated temperatures ranging from 30 to 80 °C, increased oxygen pressures ranging from 10 to 50 bar in water-filled autoclaves, and UV irradiation under atmospheric conditions. ATR-IR spectroscopy was employed to detect the increase in the carbonyl index over various aging durations, indicating the oxidative degradation of the geotextile. The most pronounced increase was observed in the case of aging through UV irradiation, followed by thermal aging. Elevated pressure, on the other hand, had a lower impact on oxidation. High-temperature size exclusion chromatography was utilized to follow the reduction in molar mass under different degradation conditions, and the results were consistent with those obtained from ATR-IR spectroscopy. In polyolefins such as polypropylene, Hindered Amine Stabilizers (HAS) are used to suppress oxidation caused by UV radiation. The quantitative analysis of HAS was carried out using a UV/Vis method and HPLC. The degradation of UV stabilizers during the aging of geotextiles is responsible for the oxidation and the reduction in the molar mass of polypropylene. From the results, it can be concluded that applications of PP geotextile without soil or sand cover might cause the risk of the formation of microplastic particles. Material selection, design, and maintenance of the construction must follow best practices, including the system’s removal or replacement at end-of-life. Otherwise, a sustainable use of geotextiles in civil engineering is not possible. KW - Geotextiles KW - Microplastic KW - Size exclusion chromatography KW - Accelerated aging PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599739 DO - https://doi.org/10.3390/su16093559 SN - 2071-1050 VL - 16 IS - 9 SP - 1 EP - 15 PB - MDPI AG CY - Basel AN - OPUS4-59973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -