TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Ultrafast spectroscopy - Femtosecond electron diffraction N2 - Currently, two main high speed processes can be investigated: electromagnetic absorption and electromagnetic scattering. At the summer university of the School of Analytical Sciences Adlershof (SALSA-HU), a series of 5 articles were presented to ilustrate the potential of ultrafast spectroscopy, from IR band assignment to monitoring time resolved structural changes. First, by studying light absorption is possible to do assignment and interpretation of IR bands in small molecules and to study the influence of ligands or labeled molecules in protein structures. Second, by studying light scattering is possible to monitoring photoinduced structural changes in solid materials. This presentation contains a study of photoinduced structural changes monitored by light scattering in condensed matter. T2 - SALSA Summer University 2017 CY - Berlin, Germany DA - 19.09.2017 KW - Ultrafast spectroscopy KW - Femtosecond electron diffraction KW - Spin crossover KW - Photoexcitation KW - Structural dynamics PY - 2017 AN - OPUS4-42120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - New approaches in isotope analysis - molecular absorption spectrometry N2 - Variations in the isotope amount composition of some elements like lithium, boron, magnesium, calcium and copper have been used as proof of provenance of a sample and to describe geological processes. Routinely, isotope compositions are determinate by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time consuming and they require a high qualified analysist. Here an alternative faster and low cost optical method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X= Li, B, Mg, Ca, Cu and Sr have been determined by monitoring the absorption spectrum of their monohydride (XH) in graphite furnace HR-CS-MAS. T2 - Seminar at Princeton University CY - Princeton, NJ, USA DA - 16.10.2017 KW - Isotope KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Graphite furnace KW - Isotope ratio PY - 2017 AN - OPUS4-43538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Analytical applications of high resolution continuum source molecular absorption spectrometry N2 - High-resolution continuum source molecular absorption spectrometry (HR-CS-MAS) has been apply for the determination of non-metals and isotope analysis, extending so the application range of atomic absorption spectrometry (AAS). This seminar is divides in two main parts. First, here is presented a comprehensive mechanistic study of molecule formation in graphite furnaces, a key step into the recovery of analytical signals in AAS and MAS. Therefore, a well-known system for fluorine determination was studied: the molecule formation of CaF, with Zr as permanent modifier. Through a kinetic approach, an Arrhenius behaved pseudo first order reaction respect to F- was observed and by spectroscopic methods (XPS, XAS, EDX) an intermediate state was possible to be elucidated. Here it is proposed a mechanism, where zirconium works as heterogeneous catalyst: after a pyrolytic step, it is activated the intermediate ZrO(OCaF) and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, we have developed analytical methods using HR-CS-MAS as detector for quantification of fluorine in consume-care products with declared per-fluorinated ingredients. Ad, the high resolution of the instrumentation allows identify isotopic shifts in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of B were investigated and so the potential of HR-CS-MAS for the determination of isotopic ratios is established. T2 - Brown Bag Lecture SALSA Humboldt Universität zu Berlin CY - Berlin, Germany DA - 18.04.2017 KW - Fluorine KW - Molecular absorption KW - Graphite furnace KW - Isotopes KW - Boron PY - 2017 AN - OPUS4-40075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Isotope analysis by molecular absorption spectrometry N2 - The use of molecular absorption spectrometry (MAS) for the determination of isotope amount ratios is here discussed. Preliminary results on the determination of isotope ratios of boron, copper and magnesium in reference materials are here presented and compared with their certificates. T2 - Adlershofer Kolloquium Analytik CY - Berlin, Germany DA - 13.06.2017 KW - Isotope KW - Molecular absorption KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Isotope ratio PY - 2017 AN - OPUS4-40574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Data-Driven Spectrochemical Methods for Elemental and Isotopic Analysis N2 - High-resolution optical spectrometers generate spectra containing tens of thousands of data points per sample. Picometre-scale isotope shifts, matrix-induced line broadening, and strong inter-feature correlations render classical peak fitting unreliable. Current analytical challenges, therefore, require rigorous algorithms able to expose latent structure, quantify uncertainty, and remain chemically interpretable. The research program presented in this lecture integrates state-of-the-art spectrochemical instrumentation with mathematically disciplined data models. Principal Component Analysis and Partial Least Squares provide chemically meaningful latent variables, while gradient-boosted decision trees or deep neural networks (ANNDL) capture residual non-linearity without sacrificing traceability. All models are trained on isotope-enriched or synthetically generated spectra and distributed with full validation workflows. T2 - Chemisches Institutskolloquium, Humboldt-Universität zu Berlin CY - Berlin, Germany DA - 21.05.2025 KW - Spectrochemistry KW - Isotopes KW - Machine learning KW - Battery KW - Data fusion PY - 2025 AN - OPUS4-63488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Lithium isotope fractionation as a diagnostic tool for aging lithium-ion batteries N2 - Lithium-ion batteries (LIBs) are central to modern energy storage technologies, powering applications from portable electronics to electric vehicles and grid storage systems. Their popularity comes from their high energy density, efficiency, and extended cycle life. However, over time, various aging mechanisms lead to capacity loss, increased internal resistance, and, ultimately, battery failure. Understanding and predicting these aging processes is crucial for enhancing the reliability and longevity of LIBs. This necessity makes the development of advanced diagnostic tools essential. This study uses plasma-based spectrometry techniques to explore lithium isotope fractionation (LIF) as a predictive tool for monitoring LIB aging and degradation. Mass spectrometric techniques —including MC-ICP-MS, LA-ICP-MS, and MICAP-MS— were employed to analyze lithium isotopic composition in both new and aged lithium cobalt oxide (LCO) cells, including lab-made coin cells and commercial batteries. An isotopic fractionation was identified during electrochemical cycling: 6Li migrates towards the anode, while 7Li accumulates in the cathode. These isotopic patterns correlate with structural degradation, including solid electrolyte interphase (SEI) growth and crack formation, as confirmed by FIB-SEM, XANES, and EXAFS analyses. This correlation demonstrates that LIF aligns with key aging mechanisms in model coin cells and commercial batteries, such as capacity fade and impedance growth. LIF provides a powerful diagnostic tool for battery health monitoring and aging prediction by linking isotopic fractionation to structural degradation. This approach offers significant potential to extend battery lifespan and improve the reliability of energy storage systems. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Isotope KW - Lithium KW - Battery aging KW - Degradation KW - Fractionation KW - Battery PY - 2025 AN - OPUS4-63487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Laser spectroscopy methods for calcium isotope analysis N2 - Calcium isotope analysis can be an important tool for paleoclimate studies of the carbon cycle, as well in carbon capture technology, but its utility is limited by challenges using conventional mass spectrometry. We propose a new fast, precise, and high-throughput technology based on multiple complementary high-resolution spectroscopies analyzed by machine-learning. T2 - Seminars Chemical Physics Caltech CY - Pasadena, CA, USA DA - 13.04.2022 KW - Calcium KW - Atomic spectroscopy KW - CaF KW - Calcium monofluoride KW - Carbon cycle KW - Doppler effect KW - Sub-doppler spectroscopy KW - Laser spectroscopy PY - 2022 AN - OPUS4-56499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - On developments of continuum source atomic and molecular absorption spectrometry N2 - Der Bunsen-Kirchhoff-Preis 2022 wurde am 23.06.2022 anlässlich der analytica conference in München an Dr. Carlos Abad verliehen - in Anerkennung seiner exzellenten Entwicklungen im Bereich der continuum source atomic absorption spectrometry (CS-AAS). Dr. Carlos Abad ist ein herausragender Experte auf dem Gebiet der Atom- und molekularen Absorptionsspektrometrie. insbesondere trug er maßgeblich zur substanziellen Weiterentwicklung von Echelle-Spektrometern für die CS-AAS bei. So gelang es, einen quantitativen Zugang zu Elementen wie Bor, Chlor, Fluor und Schwefel, mittels AAS zu erreichen. Erstmals demonstriert Dr. Carlos Abad am Beispiel eines Zr-Modifier, dass durch die Zeitauflösung der eingesetzten Echelle-Systeme mechanistische Untersuchungen zur Wirkung des Modifiers im Graphitrohrofen möglich sind. Besonders hervorzuheben sind seine Arbeiten zum Einsatz der CS-AAS für die Analyse von Isotopen, die eine Genauigkeit aufweist, welche an die der Multikollektor-induktiv gekoppelten Plasma-Massenspektrometrie (MC-ICP-MS) heranreicht. Damit ergeben sich völlig neue Einsatzmöglichkeiten für technologisch hochrelevante Applikationen, wie z.B. die Untersuchung der Alterung von Lithium-Batterien oder die Lithium-Analyse in Blutserum. T2 - Analytica Conference: Bunsen-Kirchhoff-Preis 2022 der Deutsche Arbeitskreis für Analytische Spektroskopie (DAAS) CY - Munich, Germany DA - 23.06.2022 KW - Isotopes KW - Fluorine KW - Halogens KW - Non-metals KW - HR-CS-MAS KW - HR-CS-AAS KW - Bunsen-Kirchhoff-Preis KW - Continuum source atomic absorption spectrometry KW - Zr-Modifier KW - Graphite furnace KW - Lithium PY - 2022 AN - OPUS4-56500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Optical spectrometry for isotope analysis N2 - Isotope analysis is a tool for material research. For example, it may provide information about the provenance of a sample or changes in dynamic systems. Here is presented optical spectroscopy as an analytical alternative to mass spectrometry for isotope quantification based on the isotopic shift of atoms and diatomic molecules. T2 - Isotopic Tools for the Investigation of Materials WS 21/22 CY - Leoben, Austria DA - 01.10.2021 KW - Isotopes KW - HR-CS-AAS KW - Lithium KW - Atomic absorption spectrometry KW - Diatomic molecules PY - 2022 AN - OPUS4-56495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Molecular absorption spectrometry: a fast and accurate optical method for boron isotope analysis comparable to mass spectrometry N2 - Boron presents two stable isotopes, 10B and 11B and due to their relatively large mass difference (~ 10%) isotope fractionation leads to considerable isotope amount ratio variations n(10B)/n(11B) in natural occurrence. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Usually, isotope ratio variations are determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Boron isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) in graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰ for the evaluated spectral region around 437.1 nm is reported here. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements. T2 - 30. Tag der Chemie CY - Berlin, Germany DA - 05.07.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Boron monohydride KW - Isotope ratio KW - Molecular absorption KW - Memory effect KW - Graphite furnace PY - 2017 AN - OPUS4-41060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -