TY - CONF A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Dietrich, P. M. A1 - Radnik, Jörg T1 - In-situ monitoring of water dependent DNA and protein radiation damage by near-ambient-pressure XPS N2 - X-ray photoelectron-spectroscopy (XPS) allows simultaneous irradiation and damage monitoring. Although water radiolysis is essential for radiation damage, all previous XPS studies were performed in vacuum. Here we present near-ambient-pressure XPS experiments to directly measure DNA damage under water atmosphere. They permit in-situ monitoring of the effects of radicals on fully hydrated double-stranded DNA. Our results allow us to distinguish direct damage, by photons and secondary low-energy electrons (LEE), from damage by hydroxyl radicals or hydration induced modifications of damage pathways. The exposure of dry DNA to x-rays leads to strand-breaks at the sugar-phosphate backbone, while deoxyribose and nucleobases are less affected. In contrast, a strong increase of DNA damage is observed in water, where OH-radicals are produced. In consequence, base damage and base release become predominant, even though the number of strand-breaks increases further. T2 - ICRR 2023 CY - Montreal, Canada DA - 26.08.2023 KW - DNA KW - XPS KW - Proteins KW - Protein KW - G5P KW - Base damage KW - Base loss KW - Cancer treatment KW - DEA KW - DET KW - DNA radiation damage KW - Direct damage KW - Dissociative electron attachment (DEA) KW - Dissociative electron transfer (DET) KW - Dosimetry KW - ESCA KW - Energy deposit KW - Geant4 KW - Geant4-DNA KW - Hydrated DNA KW - Hydrated electron KW - Hydrated electrons KW - Hydration shell KW - Hydroxyl radical KW - Indirect damage KW - Ionisation KW - Ionization KW - LEE KW - Low energy electrons KW - MCS KW - Microdosimetry KW - NAP-XPS KW - Near ambient pressure xray photo electron spectroscopy KW - Net-ionization reaction KW - OH radical KW - PES KW - Particle scattering KW - Prehydrated electron KW - Presolvated electron KW - Quasi-direct damage KW - ROS KW - Radiation damage KW - Radiation therapy KW - Radical KW - Radiolysis KW - Radiotherapy KW - Reactive oxygen species KW - Simulation KW - Single-strand break (SSB) KW - Single-stranded DNA-binding proteins KW - TOPAS KW - TOPAS-nbio KW - TopasMC KW - Xray photo electron spectrocopy PY - 2023 AN - OPUS4-58214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kossatz, Philipp A1 - Mezhov, Alexander A1 - Andresen, Elina A1 - Schmidt, Wolfram A1 - Prinz, Carsten A1 - Resch-Genger, Ute T1 - Upconversion Nanoparticles as Luminescent Probes for Cement N2 - Safety is a key parameter for the design and construction of buildings. The most widely used construction material to date is concrete that consists of about 15-20 wt.-% cement, which is responsible for the main concrete properties, i.e., strength and durability. Despite many standards regulating the quality of cement, at present, there exists no viable method to track the cement life cycle “from cradle to grave”. This led to an increasing interest in simple and robust methods for studying the processes and changes occurring during the life cycle of cement. In this context, we explored the applicability of fluorescence measurements which can be performed with relatively inexpensive and miniaturized instrumentation yet require robust optical probes which survive the harsh cement environment. Therefore, we developed a platform of lanthanide-based upconversion nanoparticles (UCNPs), consisting of a NaYF4 matrix doped with Yb3+ and Er3+ with sizes between 20 nm and 55 nm, which show characteristic multi-color emission patterns, composed of narrow bands of varying intensity in the ultraviolet, visible, near-infrared, and short-wave spectral region and examined their potential for cement probing and the non-invasive monitoring of the hydration processes occurring during cement formation. UCNPs of different size and chemical composition were synthesized via a thermal decomposition approach under inert conditions. The tailor-made design of different emission patterns was achieved by tuning particle size and morphology, material composition, and particle surface chemistry in upscaleable syntheses. For cement probing, different types of UCNPs were added to cement and the evolution of the UCNP emission pattern was used to probe in-situ changes of physico-chemical parameters in the cementitious environment during hydration, utilizing a simple and portable custom-designed optical setup. The observed changes in the UCNP emission patterns are characteristic for a given particle size, surface chemistry, and cement composition. In addition to fluorescence measurements, conventional isothermal heat flow calorimetry was used to study the influence of UCNP addition on cement hydration kinetics. Subsequently, both sets of measurements were correlated. Our results underline the potential of our optical approach ad UCNPs for the non-invasive probing of cementitious systems and cement hydration. This can be also exploited for cutting-edge applications of construction materials such as 3D concrete printing. T2 - Summer School Exciting Nanostructures CY - Bad Honnef, Germany DA - 31.07.2023 KW - Cement Hydration KW - Upconversion KW - Fluorescence Spectroscopy PY - 2023 AN - OPUS4-58203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fritzsche, Sven A1 - Pauw, Brian Richard A1 - Weimann, Christiane A1 - Sturm, Heinz T1 - Test artifact for fs-LDW N2 - Data to generate the given graphs in the publication as well as raw images of the shown images. KW - stl code KW - Images KW - Graphs KW - Data PY - 2023 DO - https://doi.org/10.5281/zenodo.7671945 PB - Zenodo CY - Geneva AN - OPUS4-58096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Feiler, Torvid A1 - Yasuda, N. A1 - Michalchuk, Adam A1 - Emmerling, Franziska A1 - Bhattacharya, Biswajit T1 - Mechanistic Investigation of an Elastically Flexible Organic Crystal N2 - Mechanical flexibility in molecular crystals is a fascinating behavior with potential for developing advanced technologies. However, the phenomenon of mechanical bending is poorly understood. We explore for the first time the atomistic origin of elastic bending in a single component organic crystal using a combination of μ-focus synchrotron X-ray diffraction and ab initio simulation. KW - Flexible crystals KW - DFT calculation KW - Bending mechanism PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581949 DO - https://doi.org/10.1021/acs.cgd.3c00473 SN - 1528-7483 VL - 23 IS - 9 SP - 6244 EP - 6249 PB - ACS Publications AN - OPUS4-58194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kolmangadi, Mohamed A. A1 - Zhuoqing, L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Wuckert, E. A1 - Raab, A. A1 - Laschat, S. A1 - Huber, P. A1 - Schönhals, Andreas T1 - Confinement-suppressed phase transition and dynamic self-assembly of ionic superdiscs in ordered nanochannels: Implication for nanoscale applications N2 - Ionic Liquid Crystals are ionic liquids that exhibit liquid crystalline mesomorphism together with ionic conductivity. As known confined liquid crystal mesophases can show an anomalous dynamics and phase behavior. Investigations considering the factors controlling the macroscopic properties of ILCs in confinement are scare in the literature. This study reports the molecular mobility, and the phase transition behavior of a guanidinium based columnar ILC confined in the nanopores of self-ordered anodic aluminum oxide membranes of various pore diameters (25 – 180 nm) using Broadband Dielectric Spectroscopy (BDS), calorimetry and X-ray scattering. It is aimed to reveal in which way the pore size as well as the pore surface wettability (hydrophobic or hydrophilic) alters the molecular dynamics, and phase transition behavior for this system. These properties are crucial for applications. The DSC investigations reveal: (i) the phase transition temperature for the transition from the plastic crystalline to the crystalline-liquid state has non-monotonic dependence versus the inverse pore diameter and (ii) the transition from the liquid crystalline to the isotropic phase is suppressed for all nanoconfined samples. This transition suppressed in the thermal signal was evidenced by BDS and X-ray scattering. It is discussed as a continuous phase transition taking place in the pores instead of a discontinuous first order transition as observed for the bulk. BDS investigations show different relaxation processes for the bulk and the nanoconfined ILC. Molecular origins for various relaxation processes are discussed and suggested. It is further shown that the self-assembly of this ILC is dynamic in nature which might apply for other ILCs too. The obtained results will have implications for the nanoscale applications of ionic liquid crystals. KW - Ionic Liquid Crystals PY - 2023 DO - https://doi.org/10.1021/acsanm.3c02473 VL - 6 IS - 17 SP - 15673 EP - 15684 PB - ACS AN - OPUS4-58210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Chewle, S. A1 - Weber, M. T1 - Revealing Kinetics of Paracetamol Crystallization Using Time Resolved Raman Spectroscopy, Orthogonal Time-Lapse Photography, and Non-Negative Matrix Factorization (OSANO) N2 - Crystallization is a complex phenomenon with farreaching implications for the production and formulation of active pharmaceutical ingredients. Understanding this process is critical for achieving control over key physicochemical properties that can affect, for example, the bioavailability and stability of a drug. In this study, we were able to reveal intricate and diverse dynamics of the formation of metastable intermediates of paracetamol crystallization varying with the choice of solvent. We demonstrate the efficacy of our novel approach utilizing an objective function-based non-negative matrix factorization technique for the analysis of time-resolved Raman spectroscopy data, in conjunction with time-lapse photography. Furthermore, we emphasize the crucial importance of integrating Raman spectroscopy with supplementary experimental instrumentation for the mathematical analysis of the obtained spectra. KW - Polymorphism KW - Crystallization KW - Measurement KW - Algorithm PY - 2023 DO - https://doi.org/10.1021/acs.cgd.3c00617 SN - 1528-7483 VL - 23 SP - 6737 EP - 6746 PB - ACS Publications AN - OPUS4-58193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - SEM/EDS as THE Versatile and Powerful Tool for Micro and Nano Analysis N2 - The basic principles of generation of electrons and X-rays and the operation of SEM/EDS instruments are presented. Examples, recent successes and challenges in the analysis of nano-structures are given. Multi-method analytical approaches with the focus on imaging the nanoscale are highlighted. Details on the sample preparation and persepective on the automated analysis (sample preparation, measurement, data analyis and storage) are given. Metrological aspects, standardisation, and reference materials are also emphasized by examples. T2 - Training Course Metrological Determination of Micro and Nano Contaminants in Food CY - Berne, Switzerland DA - 05.09.2023 KW - SEM KW - EDS KW - Microanalysis KW - Nanoanalysis KW - Imaging PY - 2023 UR - https://www.sem.admin.ch/metas/en/home/dl/kurs_uebersicht/micro_nano_contaminants_in_food.html AN - OPUS4-58188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bustamante, Joana A1 - Naik, Aakash Ashok A1 - Ueltzen, Katharina A1 - Ertural, Christina A1 - George, Janine T1 - Thermodynamic and Thermoelectric Properties of the Canfieldite, (Ag8SnS6 ), in the Quasi-Harmonic Approximation N2 - Argyrodite-type materials have lately sparked a lot of research interest due to their thermoelectric properties. One promising candidate is canfieldite (Ag8SnS6), which has a Pna21 orthorhombic crystal structure at room temperature (RT). Recently, Slade group found a new low-temperature (LT) phase transition of canfieldite at 120K. Therefore, we investigate structural, vibrational and thermodynamic properties of Ag8SnS6 at room- and low-temperature employing density-functional theory (DFT) and lattice dynamics computations. Thermal properties calculations were based on the quasi-harmonic approximation (QHA) as implemented in phonopy. We achieve good agreement with experiments. Lattice parameters were overestimated by 2%, and thermal properties such as the constant-pressure heat capacity Cp are very close to experimental measurements. Our simulations also reveal a possible new phase transition at around 312 K. Furthermore, we compared RT and LT Ag8SnS6 Grüneisen parameters with some argyrodites analogues, Ag8TS6 (T = Si, Ge, Ti and Sn), finding a relationship between the anharmonicity and low thermal conductivity. T2 - TDEP Summer School 2023 (TDEP2023: Finite-temperature and anharmonic response properties of solids in theory and practice) CY - Linköping, Sweden DA - 20.08.2023 KW - Thermoelectric materials KW - DFT KW - QHA KW - Grüneisen parameter PY - 2023 AN - OPUS4-58147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haacke, Nasrin A1 - Sahre, Mario A1 - Schlau, Sven A1 - Gersdorf, Sven A1 - Ebell, Gino T1 - Design and construction of a rainfall simulator to test metal runoff at atmospheric conditions N2 - A rainfall simulator was presented as an environmental assessment tool to quantify wash-off concentrations from metallic materials. It is part of the RUNOFF-project, which studies and re-assesses the durability of roofing and facade materials under current atmospheric conditions in Germany. Studying building materials is important as they have a significant impact on achieving a variety of goals and targets within the sustainable developments goals (SDGs). The durability of materials is essential to reach sustainability. However, the durability of metallic materials is strongly depended on climate conditions, which have changed as a result of technical measures in industry, climate change and increasing urbanisation. In Germany at least, the data base is not up-to-date leading to prediction models regarding corrosion resistance and durability of metallic materials which can no longer be trusted and therefore need to be re-assessed and updated. Also, not only the demand for sustainable but also environmentally friendly building materials has increased dramatically. A number of construction materials produce chemical hazards, and therefore have negative impacts on water quality, soils health and ecosystems. To limit these impacts, environmental assessment methods and tools are needed to measure and quantify the inputs and outputs of building materials throughout their lifetime. T2 - EUROCORR 2023 CY - Brussels, Belgium DA - 27.08.2023 KW - Rainfall simulator KW - Runoff KW - Atmospheric conditions KW - Laboratory experiments PY - 2023 AN - OPUS4-58152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -