TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Aktivitäten der BAM im EU-Projekt NanoDefine N2 - Die Präsentation gibt einen Überblick über die Aktivitäten der BAM im EU-Projekt 'NanoDefine'. Verknüpfungen zur Entwicklung von nano-Referenzmaterialien, ISO- und VAMAS-Aktivitäten und anderen nano-Projekten werden vorausschauend diskutiert. T2 - Expertenaustausch zum Thema ‘Nanosicherheit’ zwischen BMU, BMWi und BAM CY - Berlin, Germany DA - 01.06.2018 KW - Nanomaterial KW - ISO KW - NanoDefine KW - EU-Definition KW - Nanopartikel PY - 2018 AN - OPUS4-45078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Altmann, Korinna A1 - Bannick, C. G. A1 - Obermaier, N. A1 - Venghaus, D. A1 - Barjenbruch, M. A1 - Lau, P. A1 - Herper, D. A1 - Braun, Ulrike T1 - Optimierte Materialien und Verfahren zur Entfernung von Mikroplastik aus dem Wasserkreislauf N2 - Das Ziel dieses Projektes ist die Entwicklung neuer Materialien, um den Rückhalt von Mikroplastik-Partikeln (MP) aus verschiedenen urbanen Eintragspfaden (Kläranlagenablauf, Mischwasserüberlauf und Straßenabfluss)zu optimieren. Die im Rahmen des Projekts entwickelten Materialien sollten auf ihre Rückhaltefähigkeit von MP aus dem Kläranlagenklarlauf getestet werden. Für die Probenahme sowie für die Analytik wurden die entwickelten und optimierten Probenahme- sowie Analysetechniken angewendet. T2 - Konferenz der BMBF-Fördermaßnahme "MachWas-Materialien für die nachhaltige Wasserwirtschaft" CY - Frankfurt am Main, Germany DA - 29.05.2018 KW - Mikroplastik KW - TED-GC-MS KW - Mischwasser KW - Straßenablauf PY - 2018 AN - OPUS4-45043 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Shell thickness determination for PTFE‐PS core‐shell nanoparticles using scanning transmission X‐ray microscopy (STXM) N2 - A scanning transmission X‐ray microscopy (STXM)‐based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core‐shell nanoparticles, which exhibit a strong X‐ray absorption contrast and a well‐defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less X‐ray beam‐induced damage of the sample is achieved by recording STXM images only at 2 predetermined energies of maximum Absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core‐shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near‐edge X‐ray absorption fine structure spectroscopy confirms the significant difference in X‐ray absorption behavior between PTFE and PS. Additionally, because of the insolubility of styrene in PTFE a well‐defined interface between particle core and shell is expected. To validate the STXM results, both the naked PTFE cores as well as the complete core‐shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM‐based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core, which cannot be extracted from a SEM micrograph. T2 - European conference on applications of surface and interface analysis (ECASIA'17) CY - Montpellier, France DA - 24.09.2017 KW - Core-shell nanoparticles KW - Polymers KW - PS KW - PTFE KW - SEM KW - STXM PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449700 DO - https://doi.org/10.1002/sia.6464 SN - 1096-9918 SN - 0142-2421 VL - 50 IS - 11 SP - 1077 EP - 1082 PB - John Wiley & Sons CY - Hoboken, New Jersey, USA AN - OPUS4-44970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eitzen, L. A1 - Sartoretto, A. A1 - Braun, Ulrike A1 - Jekel, M. A1 - Ruhl, A.S. T1 - Einfluss von Dispergiermitteln auf Polystyrol- Mikroplastikdispersionen N2 - Es wird Herstellung definierter Dispersionen mit Partikeln aus Polystyrol (PS) zur beschrieben:für die Simulation natürlicher Stabilisierung, die Untersuchung des Partikelverhaltens und die effizienteren Klassierung der Partikel durch Filtration. T2 - Wasser Tagung der GdCh CY - Papenburg, Germany DA - 07.05.2018 KW - Mikroplastik KW - Analytik KW - Modellmaterialien PY - 2018 AN - OPUS4-45032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Bannick, C. G. T1 - Sampling, sample preparation and detection of microplastics, current activities in the ISO/TC 61/SC14/WG 4 N2 - Presentation about the actual status of microplastic research in BAM and UBA, activities in Germany and ISO/TC61/SC14. T2 - Microplastic Methodes Workshop CY - London, UK DA - 23.05.2018 KW - Microplastics KW - TED-GC-MS KW - Analysis KW - Standardisation PY - 2018 AN - OPUS4-45033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf DO - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Yamamoto, K. A1 - Grulke, E. A. A1 - Maurino, V. T1 - Shape controlled TiO2 nanoparticles as candidates for nano-CRM’s – an ISO case study N2 - Extraction of true, 3D shape (and size) of non-spherical nanoparticles (NPs) is associated with errors by conventional 2D electron microscopy using projection images. Significant efforts within the ISO technical committee TC 229 ‘Nanotechnologies’ are aimed at establishing accurate TEM and SEM measurement of NP size and shape as robust, standard procedures. Study groups have been organizing inter-laboratory comparisons on well-selected NP systems according to the market needs, such as aggregated titania nano-powder for which size and shape distribution of primary crystallites of irregular shape must be measured accurately. To be noticed is e. g. the fact that the measurement procedure allows only manual selection of the particles clearly distinguishable for analysis as well as manual definition of the contour of the imaged NPs. An inter-laboratory exercise on titania NPs (pure anatase, grown by hydrothermal synthesis) of well-defined non-spherical shape, i.e. bipyramidal has been recently started within ISO/TC 229 under similar conditions as for the irregular shaped titania. Overlapped particles were allowed to be considered, as long as they are clearly distinguishable. One decisive NP selection criterion was to analyze only those NPs with a roundness value below 0.7, i.e. the NPs laying on the support foil and, hence, with projection areas clearly deviating from perfect circles (R=1). The overall evaluation (for 15 labs) of the size descriptors (area, Feret, minFeret, perimeter) and shape descriptors (aspect ratio, roundness, compactness, extent) by analysis of variance is just to be finished and included in ISO/WD 21363 Nanotechnologies -- Protocol for particle size distribution by transmission electron microscopy. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Titanium oxide KW - Nanoparticles KW - Shape-controlled KW - Electron microscopy KW - Reference material PY - 2018 AN - OPUS4-44996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Bosse, H. T1 - Improved traceability chain of nanoparticle size measurements – the new EMPIR project nPSize N2 - Coming as response to the needs expressed by The European Commission mandating CEN, CENELEC and ETSI to develop European standards for methods that can characterize reliably manufactured nanomaterials, a new European metrology research project ‘nPSize - Improved traceability chain of nanoparticle size measurements’ has received funding for the next three years. The project will develop methods, reference materials and modelling to improve the traceability chain, comparability and compatibility for nanoparticle size measurements to support standardization. nPSize has selected only those nanoparticle sizing techniques which are able to provide traceable results: electron microscopy (SEM, TSEM and TEM), AFM and SAXS. Metrologists from national metrological or designated institutes (PTB, LNE, LGC, VSL, SMD and BAM) will work together with scientists with know-how in development of new nano reference nanoparticles (CEA, University of Turin, LGC, BAM) and with experts in advanced data processing, e.g. by machine learning (POLLEN). With the support of DIN, the project outcomes will be channelized to standardization bodies such as ISO/TC 229 ‘Nanotechnologies’/JWG 2 ‘Nanoparticle Measurement and Characterization’ (SEM, TSEM and TEM), CEN/TC 352 ‘Nanotechnologies’ (SEM, TSEM and TEM), ISO/TC 201/SC 9 (AFM), ISO/TC 24/SC 4 (SAXS). Three technical work packages will ensure input for impact to standardization community, nanoparticle manufacturers, instrument manufacturers, and (accredited) service laboratories: - WP1 Performance and traceability of characterization methods - WP2 Reference materials - Preparation and Characterization - WP3 Modelling and development of measurement procedures Well-defined non-spherical nanoparticles shapes such as cubes, platelets, bipyramids, rods/acicular will be developed, with mono- and polydisperse size distribution, as well as with accurate particle number concentration (by SAXS and isotopically enrichment for ICP-MS). Physical modelling of the signal for TSEM, SEM, 3D-AFM and SAXS will be used to feed machine learning modeling from a-priori measurement data. Further, data fusion will be developed for hybrid sizing techniques: SEM with TSEM/TEM, SEM/TSEM with AFM, SEM/TSEM with SAXS with the final aim of improving the true shape and size of non-spherical nanoparticles by a better estimation of the measurement uncertainties. In the second half-time of the project dedicated workshops (focused on method improvement and reference materials development) will be organized to disseminate the gained knowledge to end-users. Further, a data library with relevant tagged measurement data is planned to be organized and made publicly available. Inter-laboratory comparisons based on the newly developed multi-modal nano reference materials will be organized preferably within VAMAS/TWA 34 ‘Nanoparticle populations’. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Nanoparticles KW - Size KW - Shape KW - Traceable size PY - 2018 AN - OPUS4-44995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -