TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Salzmann, Christoph A1 - Pellegrino, F. A1 - Durand, B. A1 - Taché, O. A1 - Zurutuza, A. T1 - Role of Sample Preparation for Accurate and Automated Morphological Analysis of Nanoparticles proven in Interlaboratory Comparison Exercises N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Nanoparticles KW - VAMAS KW - Interlaboratory comparison KW - Sample preparation KW - Nanoparticle concentration PY - 2024 AN - OPUS4-60453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Matjacic, L. A1 - McMahon, G. A1 - Bernicke, M. A1 - Bernsmeier, D. A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Chemical Nanoscale Analysis of Mesoporous Mixed IrOx-TiOx Thin Films N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach. Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Thin films KW - Mesoporous KW - IR oxide KW - Ti oxide KW - Porosity PY - 2024 AN - OPUS4-60452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Rapid Desease Monitoring with Resistive-Pulse Sensing in Nanopipettes N2 - Following parts of the research project as proceeded at University of Birminngham are presented: Translocation, Experiments, Synthesis of DNA Structures, Antibody, Biomarker, Binding. Following works have been carried out at BAM: High Resolution Electron Microscopy, Dedicated Sample Preparation, Surface Analysis Methods. T2 - UoB-BAM Chemistry Theme Meeting CY - Online meeting DA - 15.05.2024 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - Surface analysis PY - 2024 AN - OPUS4-60451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Breaking the Wall of Rapid Diagnostics N2 - In this short presentation the diagnostics, biomarkers and analysis are interrelated. The specificity and sensitivity of the DNA structures as well as the high-throughput option of the nanopore sensing are discussed. T2 - Falling Walls Lab Berlin-Adlershof CY - Berlin, Germany DA - 21.09.2023 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - DNA structures PY - 2023 AN - OPUS4-60450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Elisabeth A1 - Weise, Matthias A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Sahre, Mario A1 - Lange, Thorid A1 - Hodoroaba, Dan T1 - Towards a high-entropy alloy thin-film reference material N2 - Analyzing materials composed of multiple elements with spectroscopic techniques such as X-ray Photoelectron Spectroscopy (XPS), Auger-Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA), can be challenging due to spectral overlap. Moreover, each analytical method introduces its own set of challenges, e.g., the strong secondary fluorescence effect for neighbor elements in EPMA, thus, making the accurate elemental quantification in such materials difficult. When the material is available as thin film, additional constraints are inherently present. To provide a reference material for these analytical challenges high entropy alloys (HEAs) are excellent candidates. Currently, there is no thin film reference available containing more than 2 elements. Unlike traditional alloys, which typically consist of one or two main elements and smaller amounts of secondary elements, HEAs are characterized by the presence of multiple principal elements in almost equal proportions. This unique composition results in a high degree of disorder at the atomic level, leading to exceptional mechanical, physical, and often unexpected properties. HEAs have garnered significant attention in materials science and engineering due to their potential applications in a wide range of industries, from aerospace and automotive to electronics and renewable energy. For the preparation of a dedicated thin film reference material, we have chosen to prepare HEAs by magnetron sputtering, since it is not associated with elemental segregation that may occur due to the high configurational entropy of HEAs, which promotes atomic rearrangements. Our goal was to prepare films with a homogeneous thickness and defined chemical composition to be analyzed by various methods dedicated to surface analysis. The material, consisting of titanium, chromium, manganese, iron, and nickel was deposited as film on silicon substrates - to our knowledge the first HEA thin film of this type reported in literature. A set of different thickness of the films was chosen, on the one hand to facilitate the analysis with different techniques, and on the other side to evaluate the limitations of the respective methods. The films morphology was characterized as prepared by SEM followed by the analysis of their 2D compositional homogeneity by EDX, XRF, ToF-SIMS and XPS. in-depth chemical composition was evaluated by ToF-SIMS and AES. The outcomes of analyzing the initial batches of films will be presented. T2 - European Conference on Applications Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 10.06.2024 KW - High-entropy alloy KW - Thin film KW - Magnetron sputtering PY - 2024 AN - OPUS4-60455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren A1 - Sahre, Mario A1 - Hesse, R. A1 - Schusterbauer, Robert A1 - Grant, M. A1 - Agudo Jacome, Leonardo A1 - Albrecht, T. A1 - Hodoroaba, Vasile-Dan T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As nanopipettes are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. For exploring these effects, quartz nanopipettes were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The inner channel of the sensing region was exposed with focused ion beam (FIB) milling as a dedicated sample preparation method for nanoscale surface analysis. The sample characterisation involved scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and low-energy energy dispersive x-ray spectroscopy (EDX). The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes, and allow for the study of different surface functionalisation at the all-important sensing region. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Nanopipettes KW - FIB KW - Surface analysis KW - Surface modification KW - Silanisation PY - 2024 AN - OPUS4-60449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren A1 - Sahre, Mario A1 - Hesse, R. A1 - Schusterbauer, Robert A1 - Grant, M. A1 - Agudo Jacome, Leonardo A1 - Albrecht, T. A1 - Hodoroaba, Vasile-Dan T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As they are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. With the aim of developing a comprehensive approach for characterisation of such nanopipettes, this research focuses on combining surface-sensitive analysis methods with advanced sample preparation techniques. Quartz substrates were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The sample characterisation involved scanning electron microscopy (SEM), low-energy dispersive x-ray spectroscopy (EDX), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Using focused ion beam (FIB) milling under gentle conditions, the inner surface of quartz nanopipettes was exposed whilst preserving the integrity of the overall structure (see figure). Owing to the challenging analysis conditions, modification and analysis of flat quartz substrates has been performed in parallel for optimisation purposes. The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes and allow for the study of different surface functionalisations at the all-important sensing region. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Quartz nanopipettes KW - Nanopipette modification KW - Silanization KW - Surface analysis KW - Focussed ion beam PY - 2024 AN - OPUS4-60447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Schusterbauer, Robert A1 - Schusterbauer, Jörg Manfred A1 - Jones,, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Schusterbauer, Robert A1 - Stockmann, Jörg Manfred A1 - Jones, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis with electron microscopy applied in different operating modes (SEM, STEM-in-SEM and TEM) for the accurate morphological characterisation of non-spherical fine nanoparticles N2 - Electron microscopy applied in different operating modes, e.g., SEM, TEM or STEM-in-SEM, is the gold standard method to investigate the exact size and shape of individual nanoparticles. However, when fine nanoparticles with a non-monodisperse size distribution and non-spherical shapes are analysed, achieving an accurate result is challenging. Deviations in size measurements of more than 10% may occur. Understanding of the contrasts and sensitivities characteristic to the individual operating modes of an electron microscope is key in interpreting and evaluating quantitatively the measurement uncertainties needed for an eventual certification of specific nanoparticles via traceable results. Further, beyond the pure measurement, the other components in the analysis workflow with significant impact on the overall measurement uncertainties are the sample preparation and the image segmentation. In the present study the same areas of selected iron oxide fine nanoparticles (<25 nm) as reference nanomaterial (candidate) prepared on substrate for electron microscopy imaging are analysed correlatively with SEM, STEM-in-SEM and TEM with respect to their size and shape distribution. Individual significant measurement uncertainties are discussed, e.g., the sensitivity of secondary electron detectors of InLens-type to the surface morphology, particularly to the presence of an ultrathin organic coating or signal saturation effects on the particle edges, to electron beam exposure, to surface contamination, or the selection of the threshold for image segmentation. Another goal of this study is to establish a basis of analysis conditions which shall guarantee accurate results when both manual and particularly (semi-)automated segmentation approaches are applied. Advantages as well as limitations of the use of different electron microscopy operating modes, applied individually and correlatively, are highlighted. T2 - E-MRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Nanoparticles KW - Electron Microscopy KW - Metrology KW - Imaging KW - Reference materials PY - 2024 AN - OPUS4-60436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -