TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, S. A1 - Rietz, U. A1 - Stockmann, Jörg M. T1 - Materials testing using centrifuge technology a journey through time from 2004 to 2024 N2 - This presentation provides an overview of materials testing using centrifuge technology in the period from 2004 to 2024. The development, the proof of concept, the functional principle, various operating modes as well as applications and examples are shown. T2 - ICDAMT 2024 CY - Berlin, Germany DA - 10.06.2024 KW - Centrifuge technology KW - Materials testing KW - Centrifugal adhesion testing KW - Tensile and cmpressive stress testing PY - 2024 AN - OPUS4-60541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Favre, G. T1 - How to expand the use of your test method? Validation is key towards standardisation N2 - Standardised methods need validation. The main validation parameters like trueness, repeatability and intermediate precision and reproducibility are presented. Furthermore, different methods for the validation are disussed: (certified) reference materials, representative testing materials and interlaboratory comparisons. At last, the need of proficiency testing is stressed. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Validation KW - Reproducibility crisis KW - Metrological traceability KW - Measurement uncertainty PY - 2024 AN - OPUS4-60536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Ciornii, Dmitri A1 - Knigge, Xenia A1 - Hodoroaba, Vasile-Dan A1 - Bennet, F. A1 - Meirer, F. A1 - Duijndam, A. A1 - Thünemann, Andreas A1 - Drexel, R. A1 - Fadda, M. A1 - Sacco, A. A1 - Giovannozzi, A.M. A1 - Donskyi, I. A1 - Schusterbauer, R. A1 - Nickl, P. A1 - Reichardt, P. A1 - Altmann, Korinna T1 - Revealing surface functionalities of micro- and nanoplastic particles’ surface by means of XPS N2 - Over the last 20 years, many researchers, politicians, and citizens themselves have become increasingly aware of the growing plastic problem of our time. Inadequate recycling concepts, collection points, and careless dumping of plastic products in the environment lead to an accumulation of plastic. External weather influences can cause these to degrade and fractionate, so that today microplastics (1-1000 µm, ISO/TR 21960:2020) [1] of different polymer materials can be detected in all parts of the world. The precautionary principle applies to microplastics. The particles can break down further to form nanoplastics (<1 µm, ISO/TR 21960:2020) [1]. Whether microplastics or nanoplastics pose a toxicological hazard is being investigated in a variety of ways. Valid results are still pending, however, investigations into the frequency, transport, possible sinks and entry paths must be taken into account. This is why monitoring of microplastics is already required in the revision of the Drinking Water Framework Directive [2]. The same is still pending in the final version of the revision of the Waste Water Framework Directive this year, but is expected. Nanoplastics are particularly under discussion for having a toxic effect on humans and animals, as these particles are small enough to be absorbed by cells. For targeted toxicological studies, it is important to have test and reference materials that resemble the particles found in the environment. To mimic environmental samples, these materials should also have an irregular shape and show aging at the surface, which can be detected with XPS or SEM/EDS. BAM in collaboration with the EMPIR project "PlasticTrace" works on a reference material candidate of nano-sized polypropylene (nano-PP) [3]. The nano-PP vials were tested for homogeneity with PTA and further characterized with bulk and surface-sensitive techniques. An SEM image and a corresponding XPS spectrum are presented in Figure 1. Raman measurements as well as XPS indicate an aged surface. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Surface chemistry KW - Micro- and nanoplastics KW - X-ray Photoelectron Spectroscopy KW - MNP production technique PY - 2024 AN - OPUS4-60535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Weimann, T. A1 - Bütefisch, S. T1 - A new XPS test material for more reliable surface analysis of microstructures N2 - Small-area XPS analysis is one of the most popular and powerful methods for analysing the surface of features in the micro-range. When measuring microstructures, the ques-tion arises whether the measuring point is really located at the point intended to be ana-lysed. Information in a measured spectrum might originate within the field of view (FoV) on the surface of the sample, from outside the FoV, or even from inherent contamination. To ensure that small structures can be measured correctly regardless of user and instru-ment, certain instrument and sample settings must be known and selected correctly: beam and aperture size as well as the aperture settings and the approximate dimensions of the structure to be analysed. This is the only way to ensure that the information in the spectrum originates only from the FoV on the analysed structure. To test the performance of the XPS instruments, a dedicated test material was developed that consists of a gold surface on which 8 circles and 8 squares of chrome are incorpo-rated using a masking process, so that the Au substrate and the Cr structure surfaces are in the same surface plane. In order to be able to test as many as possible instruments from different manufacturers, the structures have been designed with a size ranging from 300 µm down to 7 µm. The layout of the test material has been optimised in regard of the handling. The structures are arranged along lines instead of a circumference, marking arrows around the smaller structures (≤50 µm) are added, and the lithography mask is optimised regarding edge and diffraction effects. Furthermore, the manufacturing process was changed from electron-beam deposition to mask lithography due to costs reasons. The structures on the test material were measured with a metrological SEM to determine their accurate dimensions and check the repeatability of the manufacturing process. XPS investigations with a Kratos AXIS Ultra DLD and an ULVAC-Phi Quantes demonstrates the suitability of this new test material for measuring the analysed area. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Small-area XPS KW - Test material KW - Field of view KW - Imaging PY - 2024 AN - OPUS4-60539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Habibimarkani, Heydar A1 - Abram, Sarah Luise A1 - Prinz, Carsten A1 - Hodoroaba, Vasile-Dan T1 - Comparative chemical analysis of Ni-Fe oxide nanoparticles N2 - Ni-Fe oxide nanoparticles have gained a lot of interest because of their high activity in the oxygen evolution reaction (OER) which is crucial for water splitting. [1] Although there have been great efforts in the last years, the understanding of the synergistic effect between Fe and Ni is still under discussion. Therefore, we prepared different Ni-Fe oxide nanoparticles with different compositions from pure iron oxide to pure nickel oxide adapting a known procedure. [2,3] Size and morphology of the nanoparticles depend on the composition which was shown with Transmission Electron Microscopy (TEM). The compositions of the nanoparticles were measured with a comparative approach using X-ray Photoelectron Spectroscopy (XPS), Hard X-ray Photoelectron Spectroscopy (HAXPES), and Energy Dispersive X-Ray Spectroscopy (EDS) coupled with the TEM providing detailed chemical information of the nanoparticles in different sample regions. EDS reveals that the different sample regions are dominated by one of the components, Fe or Ni, but a slight mixing between the components can be found (see Figure 1), which was confirmed with X-ray Diffraction (XRD). XPS indicates the enrichment of Fe at the sample surface, while HAXPES and EDS data agree on the stoichiometry of the bulk. High-resolution XPS and HAXPES exhibit some differences in the valence states of Fe and Ni, whereas Ni seems to be easier to reduce than Fe. Further investigations combining these different techniques and additionally Secondary Ion Mass Spectrometry (ToF-SIMS) are ongoing by using in situ approaches and coupling cyclic voltammetry to the analytical techniques. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Oxygen evolution reaction KW - Transmission Electron Microscopy KW - (Hard) X-ray Photoelectron Spectroscopy KW - Synergistic effects PY - 2024 AN - OPUS4-60534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Standardisation needs for regulatory testing of graphene and related 2D materials. phy-chem properties N2 - The main properties and main methods which are needed for the physico-chemical characterisation of graphene related 2D materials are discussed. As expample for standardization, protocols for the measurement of the chemical composition with XPS are discussed. The results of an interlaboratory comparisons led to new recommendations for the reliable measurments protocols. T2 - Materials Week 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Standardisation KW - Functionalized graphene KW - Interlaboratory comparison KW - Endpoints PY - 2024 AN - OPUS4-60537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Chemello, Giovanni A1 - Reed, B.P. A1 - Marchesini, S. A1 - Pollard, A.J. A1 - Clifford, C.A. T1 - Reliable measurements of the chemical composition of graphene-related 2D materials with X-ray photoelectron spectroscopy N2 - Graphene and related 2D materials (GR2Ms) are now entering an exciting phase of commercialization and use in products. Graphene nanoplatelets (GNPs) can be obtained in rather large quantities, but the properties of these industrially produced powders can vary depending on the production method, and even from batch to batch. Understanding and optimizing the surface chemistry of GNPs, modified through chemical functionalization processes is crucial, because it affects their dispersibility in solvents and matrices for the purpose of embedding them into real-world products. Therefore, reliable and repeatable measurements of the surface chemistry of functionalized GNPs are an important issue for suppliers as well as users of these materials. To address these concerns, international documentary ISO standards for measurement methodologies are under development which incorporate protocols that are becoming widely accepted in the community. Recently, it was shown that pelletizing led to lower average O/C atomic ratios than those measured for powders [1]. In another study, the influence of the morphology on the degree of functionalization was shown [2]. As expected, a higher degree of functionalization was detected for smaller GNPs. The functionalization was located at the outermost surfaces of the GNPs by comparing experiments using photoelectron with soft (Al Kα, 1.486 keV) and hard X-rays (Cr Kα, 5.405 keV). Therefore, it is important for those using GNPs to understand both the physical and chemical properties of these particles, when considering their use in different applications. The next step for reliable characterization protocols was the realization of an interlaboratory comparison under the auspices of VAMAS (Versailles Project on Advanced Materials and Standards) with 22 participating laboratories from all over the world. Samples of oxygen-, nitrogen-, and fluorine- functionalized GNPs were provided to the participants along with a measurement protocol. Participants were asked to prepare the samples as powders on a tape, powders in a sample holder recess, or as pellets. The lower measured O/C ratio reported for pelletized samples [1] was confirmed. The lowest scattering of the results was observed for the powders measured in the recess (Fig. 1). Furthermore, an influence of the humidity on the results was observed. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Interlaboratory Comparison KW - Functionalized graphene KW - Sample preparation PY - 2024 AN - OPUS4-60533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Interlaboratory comparisons as tool in advanced materials characterisation N2 - Interlaboratory comparisons (ILCs) are an important tool for the validation of characterisation methods, and, herwith, a prerequisite for standardisation. The "Versailles Project on Advanced Materials and Standards" offers a framework for performing such ILCs: (i) TiO2 nanoparticles using ToF-SIMS, and (ii) the chemical composition of functionalized graphene using XPS. The results of both ILCs underline the importance of sample preparation for the measured results. T2 - NanoMeasure France Meeting CY - Online meeting DA - 07.06.2024 KW - Standardisation KW - Validation KW - Interlaboratory comparison KW - Graphene related 2D materials KW - Titania nanoparticles PY - 2024 AN - OPUS4-60532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian R. A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Manufacturing KW - Mechanical properties KW - Microstructure KW - Plasticity KW - Zirconia: yttria stabilized PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605176 DO - https://doi.org/10.1111/jace.19849 SN - 1551-2916 SP - 1 EP - 10 PB - Wiley CY - Oxford [u.a.] AN - OPUS4-60517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of Lateral Dimensions of Particles & Flakes (2D) by Imaging Methods N2 - An overview with the basics of size and shape measurement of particles and 2D structures according to established methodologies (and popular imaging processing software packages) with imaging techniques is given. Main descriptors are explained based on practical cases are determined interactively at the flipchart. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Nanoparticles KW - 2D materials KW - Lateral dimensions KW - ISO KW - Imaging PY - 2024 AN - OPUS4-60454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -