TY - CONF A1 - Buchholz, Michelle A1 - Gawlitza, Kornelia A1 - Gersdorf, Anna A1 - Gradzielksi, Michael A1 - Rurack, Knut T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez Garcia, Maria Amparo A1 - Bell, Jeremy A1 - Rurack, Knut T1 - Characterization and testing of commercial photo-resins for the fabrication of free-form optical elements with standard LCD 3D printer for advanced opto-biosensing applications N2 - Optical biosensors often show remarkable performance and can be configured in many ways for sensitive, selective, and rapid measurements. However, the high-quality and advanced optical assemblies required to read out the sensor signals, for example, Total Internal Reflection Fluorescence (TIRF) or Supercritical Angle Fluorescence (SAF) microscopy, which necessitate complex and expensive optical elements. Particularly in optical method development, researchers or developers are often confronted with limitations because conventional manufacturing processes for optical elements can be restrictive in terms of design, material, time, and cost. Modern and high-resolution 3D printing techniques make it possible to overcome these challenges and enable the fabrication of individualized and personalized free-form optical components, which can reduce costs and significantly shorten the prototyping timeline—from months to hours. In this work, we use a modern, high-resolution (< 22 µm) commercial Liquid Crystal Display (LCD)-based 3D printer, for which we spectroscopically and physically characterized commercial photo-resins printable with the LCD technique in the first step (Figure 1). The aim was not only to produce a printed element with a high surface quality that mitigates the inner filter effects caused by attenuation (high optical density (OD) due to reflection and scattering), but also to select a material with a high refractive index (RI>1.5) and high transmission values (>90% transmittance) in the visible to near-infrared spectral range (approx. 450 – 900 nm) that exhibits little or no autofluorescence. Using a selection of suitable resins, lenses and free-form optical elements were manufactured for comparison with standard glass or plastic counterparts. T2 - Europt(r)ode XVI CY - Birmingham, England DA - 24.03.2024 KW - 3D-printing KW - Optics KW - Photopolymerization KW - Sensors KW - Rapid prototyping PY - 2024 AN - OPUS4-59875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Empowering test strips for rapid, highly sensitive and multiplexed analysis of small molecule analytes at a point-of-need N2 - In particular, the rapid development of lateral flow assays as indispensable tools for everyone to contain the SARS-CoV-2 pandemic has fuelled the global demand for analytical tests that can be used outside dedicated laboratories. In addition to their use in medical diagnostics, rapid tests and assays have become increasingly important in various fields such as food safety, security, forensics, and environmental management. The advantage is obvious: taking the assay directly to the sample minimizes the time between suspicion and decision-making, allowing faster action. Especially today, when mobile communication devices with powerful computing capabilities and built-in cameras are ubiquitous, more people than ever before around the world have the basic skills to operate a powerful detector at their fingertips. This sets the stage for a much wider use of analytical measurements in terms of prognosis and prevention, enabling professional laypersons in particular. However, current strip-based systems are primarily focused on single parameter analysis, whether it is SARS-CoV-2 biomarkers, blood glucose levels, or lead concentrations in water samples. Industrial applications of such methods also often still rely on single-parameter assays, requiring multiple runs even for a limited number of key parameters. Overcoming these limitations depends on developing low-number multiplexing strategies that ensure robustness, reliability, speed, ease of use, and sensitivity. This lecture will give an overview of several generic approaches developed in recent years to address these challenges. It will highlight how the synergy of supramolecular (bio)chemistry, luminescence detection, hybrid (nano)materials and device miniaturization can result in powerful (bio)analytical assays that can be used at a point-of-need.1-5 Selected examples will introduce key aspects of such systems that include tailored signaling mechanisms and recognition elements, materials functionalization and device integration, including hybrid nanomaterials, gated indicator release systems, strip modification, and smartphone-based analysis. T2 - 15th Rapid Methods Europe Conference CY - Amsterdam, Netherlands DA - 06.11.2023 KW - Test strips KW - Lateral flow assays KW - Explosives KW - Pesticides KW - Rapid testing KW - Multiplexing PY - 2023 AN - OPUS4-58816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut A1 - Biyikal, Mustafa T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - IEEE Sensors Conference CY - Vienna, Austria DA - 29.10.2023 KW - Chemical warfare agents KW - Lab-on-a-chip KW - Handheld sensors KW - Toxic industrial chemicals KW - Fluorescence PY - 2023 AN - OPUS4-58815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biyikal, Mustafa T1 - Development of a Handheld Device for the Trace Detection of Explosives N2 - With the help of the EXIST research transfer the startup True Detection System (TDS) will develop a portable and easy-to-use handheld device based on chemical-optical sensors that can detect the smallest traces of various explosives and markers (e.g. TNT, C4, ANFO, TATP, DMDNB, etc.) and pure salts (e.g. potassium nitrate) reliably and without major cross-sensitivities. The device has been developed over the last 10 years at the Federal Institute for Material Research and Testing (BAM) in cooperation with an SME. Within the next 18 months, a laboratory prototype will now be converted into a commercial device. T2 - Photonics Days Berlin Brandenburg CY - Berlin, Germany DA - 09.10.2023 KW - Explosives KW - Trace detection KW - Handheld device KW - Lab-on-a-chip KW - Start-up PY - 2023 AN - OPUS4-58541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - PFAS Sensors N2 - This contribution provides an introduction to the development of sensors for PFAS analysis, presents the most common approaches, and describes the opto-microfluidic strategy in combination with polymerizable indicators and detection matrices currently being pursued by the Chemical and Optical Sensing Division at BAM. T2 - Advancements of Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS) – Second Workshop 2023 CY - Berlin, Germany DA - 19.09.2023 KW - PFAS KW - Sensors KW - Molecularly imprinted polymers KW - Microfluidics KW - Fluorescence PY - 2023 AN - OPUS4-58533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescence Detection of Perfluoroalkyl Carboxylic Acids with a Miniaturised Assay N2 - Per- and polyfluoroalkyl substances (PFAS) are a class of man-made organo-fluorine chemicals that have become environmental contaminants of emerging concern, originating from a variety of materials such as adhesive, stain- and oil-resistant coatings, firefighting foams, etc. The high strength of this C-F bond makes PFAS thermodynamically stable and resistant to (bio)degradation, thus retaining them in the environment over time. Perfluoroalkyl carboxylic acids (PFCAs), one category of the most used PFAS, consist of a fully fluorinated carbon backbone and a charged carboxylic acid headgroup, and have been classified as Substances of Very High Concern (SVHC) and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects.[1-2] Traditional techniques for the analysis of PFCAs include GC-MS, HRMS and HPLC-based approaches, which are laborious, not portable, costly and require trained personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response. Integration of fluorescent probes with an adequately miniaturized assay enables a promising alternative for PFCAs analysis. Here, a novel guanidine fluorescent probe has been synthesized and fully characterized for the detection of PFCAs in a biphasic extract-&-detect assay. The fluorescent probe was then incorporated into polymeric matrices supported by a red dye-doped SiO2 nanoparticle to construct a dual-emission sensing platform. Such a system allows precise and selective detection of PFCAs, reducing the interference of competitors, matrix effects and other factors except for the PFCAs. The system was then employed in a droplet-based microfluidic setup which offers a portable and easy to operate detection platform. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - PFAS KW - MIP KW - Fluorescence KW - Microfluidics KW - Fluorezsenz KW - Mikrofluidik PY - 2023 AN - OPUS4-58527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent, Estela A1 - Rurack, Knut A1 - Martinez-Manez, R. T1 - Strip-Based Rapid Tests Containing Gated Mesoporous Materials: A Perfect Combination for Sensitivity Improvement N2 - Rapid tests and assays to be used outside of a laboratory for non-trained personal and also at a point of need are becoming increasingly important in areas such as health, food, security, or the environment. Specially on that regard, paper-based sensors are emerging as a new class of devices because they fulfil the requisites of the "World Health Organization" to be ASSURED: affordable, sensitive, specific, user-friendly, rapid and robust, equipment free and deliverable to end-users. The physical, chemical and mechanical properties of cellulose or glass fiber paper in combination with the facility of preparation are making these materials of great interest while looking for cost-efficient and green alternatives for device production technologies. To improve the sensitivity of these systems, a particularly promising approach is the employment of gated indicator delivery systems using preorganized nanoscopic solid structures incorporated on paper strips to produce an exponential amplification of the detectable signal. Having in mind these concepts, several examples of (bio)gated materials incorporated into sensing membranes will be presented for the detection of small organic molecules, having fluorescence or electrochemiluminescence signal as output signal. Compared with fluorescence, it has been demonstrated that the non-optical excitation has significantly reduced the background signal, and with the help of a portable potentiostat in combination with a home-made 3D-printed case fitted onto a smartphone, the sensitivity of the sensing system has been improved tremendously, from the lower ppb range (fluorescence) to the lower ppt range. With this study, the applicability of ECL detection on paper strips in combination with gated indicator-releasing materials has been demonstrated for the first time, presenting a novel synergistic match. Considering the modularity of the system developed, the platform technology potential is obvious, promising expansion of the general concept to many other analytes, applications and scenarios. T2 - XVI International Workshop on Sensors and Molecular Recognition CY - Valencia, Spain DA - 06.07.2023 KW - Schnelltest KW - Vor-Ort-Analytik KW - Lateral Flow Assays KW - Indikatorfreisetzung KW - Fluoreszenz PY - 2023 AN - OPUS4-57966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez-Sigüenza, G. A1 - Garrido, E. A1 - Climent, Estela A1 - Marcos, M. D. A1 - Rurack, Knut A1 - Sancenon, F. A1 - Marti-Centelles, V. A1 - Martinez-Manez, R. T1 - Dye-Displacement-Based Test Implemented in Lateral Flow Strips to Prevent GHB Spiking in Alcoholic Beverages N2 - γ-Hydroxybutyric acid (GHB) is a natural metabolite, which is currently used as a date rape drug. Particularly, GHB is rapidly eliminated and its detection in realistic environments is only possible within 6-12 h after ingestion. Owing to the increasing use of GHB for criminal purposes, a need has arisen to develop simple and in situ efficient assays for its identification in aqueous and alcoholic drinks. Based on the above, we report herein an indicator displacement assay (IDA) for GHB detection that consists of a Cu2+ complex with a tetradentate ligand and the fluorescent dye coumarin 343 (IDA probe 1). Firstly, the tetradentate ligand was synthesized by reductive amination of a 1,2-cyclohexyl diamine with 2-quinoline carboxaldehyde. Subsequently, this ligand was reacted with Cu(CF3SO3)2 to obtain the corresponding copper complex, which generates the final sensing ensemble by coordinating with coumarin 343 (IDA probe 1). The sensing mechanism relies on a displacement of coumarin 343 from the sensing ensemble 1 thus restoring its fluorescence, as a consequence of the higher binding constant between GHB and complex, showing a high sensitivity in MES buffer (50 mM, pH 6.0) (detection limit of 0.03 μM). Likewise, system design and optimization led to a straightforward integration into a lateral-flow assay without further treatment or conditioning of the test strips while guaranteeing fast overall assay times of 1 min (Figure 1). In this way, IDA probe 1 was incorporated into a coated PEG-glass fibre (PEG-GF) membrane to obtain a highly robust and sensitive lateral flow assay for GHB detection in spiked alcoholic drinks with a detection limit of 0.1 μM in less than 1 min coupled to smartphone readout. T2 - XVI International Workshop on Sensors and Molecular Recognition CY - Valencia, Spain DA - 06.07.2023 KW - Schnelltest KW - Vor-Ort-Analytik KW - Drogen KW - Farbstoffe KW - Lateral Flow Assay PY - 2023 AN - OPUS4-57942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -