TY - CONF A1 - Müller, Thoralf A1 - Burkert, Andreas T1 - Field exposure studies of austenitic and duplex stainless steels in tunnel atmospheres N2 - Due to the high corrosivity that are present in road tunnel structures, cleaning and maintenance work on stainless steel components in the tunnels is carried out at regular intervals in the tunnels, which means that parts of the lanes or the whole tunnel have to be temporarily closed. To reduce these traffic disruptions and maintenance costs, it is important to reduce the work that is needed for cleaning and maintenance of stainless steel components in road tunnels. One possibility is the identification and utilization of better suited alternatives to the commonly used austenitic stainless steels AISI 316L and AISI 316Ti. Thus, a field exposure study was carried out in different road tunnels throughout Germany to qualify different duplex and lean duplex stainless steels for tunnel constructions. The proposed scientific poster gives an overview of results after the first three years of exposure in three different road tunnels. Samples of different stainless steels were placed in different areas of the tunnel – at lane height and at the ceiling. Some samples were exposed under sheltered conditions. Pit depths were evaluated on the free surface and in crevice areas after each year of exposure. The investigations show that duplex stainless steels have a comparable or even better corrosion resistance than austenitic steels in tunnel atmospheres T2 - Stainless Steel World Conference & Expo 2023 CY - Maastricht, Netherlands DA - 26.09.2023 KW - Corrosion KW - Atmosphere KW - Tunnel KW - Stainless Steel PY - 2023 AN - OPUS4-58487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Reduction in Train-Induced Vibrations—Calculations of Different Railway Lines and Mitigation Measures in the Transmission Path JF - Applied Sciences N2 - The reduction in train-induced ground vibrations by different railway lines and by mitigation measures in the propagation path was analysed in a unified approach by two-dimensional finite element calculations. In general, there was no reduction at low frequencies, and the reduction be-came stronger with increasing frequencies. A maximum reduction of 0.1 at high frequencies was established with an open trench. Reductions between 0.7 and 0.2 have been found for the other sit-uations, filled trenches, walls, plates, and blocks, as well as for railway lines on dams, in cuts and in a tunnel. Bridges can produce amplifications due to their resonance frequencies, but also strong reductions due to massive bridge piers. The influence of some parameters has been analysed, such as the bridge span, the inclination of the dam and the cut, the stiffness of the soil, and the tunnel structure. The dynamic track stiffnesses of a surface, bridge, and tunnel track have been calculated using the 3D finite-element boundary-element method for comparison with corresponding meas-urements. KW - Train-induced vibration KW - Mitigation KW - Trench KW - Obstacles KW - Tunnel KW - Bridge KW - Finite element KW - Boundary element PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579573 DO - https://doi.org/10.3390/app13116706 VL - 13 IS - 11 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-57957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Lehmann, Jens A1 - Burkert, Andreas T1 - Lean Duplex als alternative Güte zu Standardausteniten im Bauwesen N2 - Dieser Vortrag stellt die technologischen und industriellen Meilensteine bei der Etablierung von Lean Duplex Stählen im Bereich des Bauwesens vor. Ein weiterer Blick geht auf die weiteren Entwicklungen an der BAM hinsichtlich der Ausweitung der Kapazitäten und Standorte atmosphärischer Bewitterungsstände der BAM. T2 - GfKORR Jahrestagung 2022 CY - Frankfurt am Main, Germany DA - 08.11.2022 KW - Korrosion KW - Bauwesen KW - Duplexstähle KW - Offshore KW - Tunnel PY - 2022 AN - OPUS4-56198 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Wagner, Adrian A1 - Burkert, Andreas T1 - Field exposure studies of austenitic and duplex stainless steels in tunnel atmospheres N2 - Due to the high corrosivity that are present in road tunnel structures, cleaning and maintenance work on stainless steel components in the tunnels is carried out at regular intervals in the tunnels, which means that parts of the lanes or the whole tunnel have to be temporarily closed. To reduce these traffic disruptions and maintenance costs, it is important to reduce the work that is needed for cleaning and maintenance of stainless steel components in road tunnels. One possibility is the identification and utilization of better suited alternatives to the commonly used austenitic stainless steels AISI 316L and AISI 316Ti. Thus, a field exposure study was carried out in different road tunnels throughout Germany to qualify different duplex and lean duplex stainless steels for tunnel constructions. The proposed scientific poster gives an overview of results after the first three years of exposure in three different road tunnels. Samples of different stainless steels were placed in different areas of the tunnel – at lane height and at the ceiling. Some samples were exposed under sheltered conditions. Pit depths were evaluated on the free surface and in crevice areas after each year of exposure. The investigations show that duplex stainless steels have a comparable or even better corrosion resistance than austenitic steels in tunnel atmospheres. T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Corrosion KW - Atmosphere KW - Tunnel KW - Stainless Steel PY - 2022 AN - OPUS4-55595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xie, Y. A1 - Lv, N. A1 - Wang, X. A1 - Wu, Dejian A1 - Wang, S. T1 - Thermal and fire characteristics of hydrogen jet flames in the tunnel at longitudinal ventilation strategies JF - Fuel N2 - Hydrogen leakage of vehicles in the tunnel is a great threat to the safety operation of the tunnel and longitudinal ventilation strategies have always been utilized to control the fire and smoke movement of rail transit, electric and fossil-fueled vehicles in the engineering field. It is in doubt whether the longitudinal ventilation strategy could still help to reduce the jet fire hazard of transportation with H2 power in the tunnel, considering the rapid development of the hydrogen energy. In present work, a numerical research on effects of longitudinal ventilation strategies on hydrogen jet flames in the tunnel is conducted. The results illustrate that longitudinal ventilation could affect the flame characteristics of jet flames greatly in the tunnel. The critical ventilation velocity increases firstly with the increase of hydrogen leakage rates and then changes little after a critical value. The predicted theoretical model of pool fires could well predict the critical ventilation velocity for hydrogen jet fires. With the increase of longitudinal ventilation velocity, maximum ceiling temperatures are decreased greatly. According to the heat releases, jet speeds and ventilation velocities, three kinds of flame bending characteristics of hydrogen jet fire could be observed due to different effects of the inertial force. At last, the stable thermal stratification could also be destroyed by large ventilation velocities but the corresponding ventilation velocity is far larger than the critical ventilation one. With the increase of longitudinal ventilation velocities, the height of thermal layer is reduced firstly and then maintained at a constant value. KW - Hydrogen leakage KW - Tunnel KW - Jet flame KW - Longitudinal ventilation PY - 2021 DO - https://doi.org/10.1016/j.fuel.2021.121659 SN - 0016-2361 VL - 306 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-55054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung und Pfähle im inhomogenen Boden – Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln N2 - Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homoge-nen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Boden-reaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.4.2022 KW - Wellenausbreitung in der Tiefe KW - Pfahlnachgiebigkeiten KW - Erschütterungen KW - Tunnel PY - 2022 AN - OPUS4-54769 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln T2 - Tagungsband der Wiener Dynamik Tage 2021 N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.7.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 SP - 1 EP - 11 PB - Steinhauser Consulting Engineers (STCE) CY - Wien AN - OPUS4-53253 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.07.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 AN - OPUS4-53254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Berchtold, Florian T1 - Metamodel for complex scenarios in fire risk analysis of road tunnels N2 - The risk analysis of road tunnels faces a growing complexity in fire scenarios, e.g. caused by new energy carriers. Essentially, such complex scenarios involve many interactions between the tunnel users, the fire source and the safety measures. One example is the alarm of tunnel users either initiated by the perception of smoke or by the fire alarm system. To consider these interactions for the quantification of consequences, e.g. fatalities, risk analysis requires a complex model. However, the complex model can compute in practice only few discrete scenarios due to its high computational cost, whereas risk analysis generally needs the consequences of a high number of random scenarios. Metamodels can solve this contradiction. They are able to approximate the consequences of many random scenarios with low computational cost based on the consequences of few discrete scenarios computed with the complex model. The efficiency of metamodels depends on the required number of these discrete scenarios. In this sense, this dissertation proposes an efficient metamodel within an innovative methodology for risk analysis of road tunnels to allow to consider an increased complexity of scenarios. This metamodel applies the following methods or models: the projection array-based design method specifies the experimental design for the discrete scenarios; the combination of the fire model FDS and the microscopic evacuation model FDS+Evac constitutes the complex model; and moving least squares produces the response surface model. The response surface model approximates the consequences of the random scenarios and therewith introduces an uncertainty, called metamodel uncertainty, which is quantified with the prediction interval method. Additionally, stochastic individual characteristics of tunnel users in discrete scenarios computed with FDS+Evac attribute evacuation uncertainties to the consequences. An original development in this dissertation, the ’direct approach’, directly transfers the evacuation uncertainties of the discrete scenarios to any random scenario. The evaluation of the metamodel in this dissertation shows following results. Firstly, the response surface model sufficiently represents the consequences of the complex model. Secondly, the metamodel uncertainty is also essential for this representation, but the prediction interval method reveals a drawback in the risk analysis. Potential approaches to deal with this drawback are discussed. Finally, the direct approach reproduces the evacuation uncertainty of the complex model which then clearly affects the consequences of random scenarios. Therefore, the consideration of the evacuation uncertainty plays an important role for the risk analysis. Furthermore, the projection array-based design method was adapted in this dissertation with two approaches, namely the combination of the experimental designs for FDS and FDS+Evac as well as their sequential refinement. Both approaches contribute to the efficiency of the metamodel. These results lead to following conclusions. Firstly, the metamodel efficiently integrates the consequences of discrete scenarios into risk analysis and thus allows to consider an increased complexity. Secondly, the metamodel is an advancement for risk analysis not only for road tunnelsbutalsomoregeneralinfiresafetyengineering. Forthesetworeasons,themetamodel might be interesting for other methodologies for risk analysis. In addition, the metamodel is generic and is therefore widely applicable on other issues beside from risk analysis, e.g. to assess the safety of structures related to time-consuming experiments depending on multiple variables. N2 - Risikoanalysen für Straßentunnel müssen eine immer größere Komplexität in Brandszenarien berücksichtigen, beispielsweise verursacht durch neue Energieträger. Dabei hängt die Komplexität von Szenarien mit einer Vielzahl von Interaktionen zwischen den Tunnelnutzern, der Brandquelle und den Sicherheitsmaßnahmen zusammen. Zum Beispiel werden Tunnelnutzer entweder direkt durch Rauch oder durch die Brandmeldeanlage alarmiert. Um die Interaktionen bei der Berechnung der Konsequenzen, wie z.B. getötete Personen, zu berücksichtigen, benötigen Risikoanalysen komplexe Modelle. Allerdings können komplexe Modelle wegen ihres hohen Zeitaufwandes nur wenige diskrete Szenarien simulieren, wohingegen Risikoanalysen auf Konsequenzen einer Vielzahl von Zufallsszenarien basieren. Als Lösung dieses Widerspruchs kommen Metamodelle in Betracht. Sie können die Konsequenzen von vielen Zufallsszenarien innerhalb kurzer Zeit näherungsweise berechnen und verwenden dafür die Konsequenzen von wenigen mit dem komplexen Modell simulierten diskreten Szenarien. Die Effizienz von Metamodellen hängt dabei mit der nötigen Anzahl von diskreten Szenarien zusammen. Demnach wird in dieser Dissertation ein effizientes Metamodell in eine selbst erstellteMethodikzurRisikoanalysefürStraßentunnelintegriert,umdamiteinehöhereKomplexität der Szenarien einbeziehen zu können. Das Metamodell setzt sich aus folgenden Methoden und Modellen zusammen: die ’projection array-based design’-Methode definiert den Simulationsplan für die diskreten Szenarien; eine Kombination aus dem Brandmodell FDS und dem mikroskopischen Evakuierungsmodell FDS+Evac bildet das komplexe Modell; und ’moving least squares’ dient zur Erstellung des Antwortflächenmodells. DasAntwortflächenmodellberechnetnäherungsweisedieKonsequenzen der Zufallsszenarien und erzeugt dadurch eine Unsicherheit, die Metamodellunsicherheit. Sie wird mit der ’prediction interval’-Methode bestimmt. Zusätzlich verursachen individuelle Eigenschaften der Tunnelnutzer in den mit FDS+Evac simulierten diskreten Szenarien Evakuierungsunsicherheiten in den Konsequenzen. Ein in der Dissertation neu entwickelter Ansatz, der ’direkte Ansatz’, überträgt die Evakuierungsunsicherheit der diskreten Szenarien unmittelbar auf die Zufallsszenarien. Die Untersuchung des Metamodels in der Dissertation führte zu folgenden Ergebnissen. Erstens,dasAntwortflächenmodellbildetdieKonsequenzenderdiskretenSzenarienausreichend genau ab. Zweitens, dazu trägt die Metamodellunsicherheit wesentlich bei. Allerdings zeigt die ’prediction-interval’-Methode einen Nachteil für die Risikoanalyse. Zur Lösung dieses Nachteils werden potentielle Ansätze diskutiert. Und drittens, der direkte Ansatz gibt die Evakuierungsunsicherheiten des komplexen Modells wieder, welche dann die Konsequenzen der Zufallsszenarien deutlich beeinflussen. Aus diesem Grund ist die Evakuierungsunsicherheit für die Risikoanalyse wichtig. Zusätzlich wurde die ’projection array-based design’Methode in dieser Dissertation mit zwei Ansätzen angepasst: der Verknüpfung beider Simulationspläne für FDS und FDS+Evac sowie deren schrittweisen Verfeinerung. Die Effizienz des Metamodels wird durch beide Ansätze erhöht. Diese Ergebnisse führen zu folgenden Schlussfolgerungen: erstens, das Metamodell integriert die Konsequenzen der diskreten Szenarien auf eine effiziente Weise in die Risikoanalyse und ermöglicht dadurch die Berücksichtigung einer höheren Komplexität; und zweitens, das Metamodell stellt einen Fortschritt für Risikoanalysen nicht nur für Straßentunnel sondern auch allgemein im Brandingenieurwesen dar. Aus diesen beiden Gründen kann das Metamodell für andere Methodiken zur Risikoanalyse interessant sein. Zudem ist das Metamodel flexibel auf andere Problemstellungen außerhalb der Risikoanalyse anwendbar, wie z.B. der Bewertung der Bauwerkssicherheit, welche von zeitaufwändigen Untersuchung und mehreren Variablen abhängt. KW - Metamodel KW - Surrogate KW - Uncertainty KW - Risk KW - Consequence KW - Fire KW - Evacuation KW - Tunnel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:hbz:468-20200114-101029-6 DO - https://doi.org/10.25926/evq8-h241 SP - 1 EP - 171 PB - Bergische Universität Wuppertal CY - Wuppertal AN - OPUS4-51039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wagner, Adrian T1 - Ergebnisse der 1. Probenentnahme im rahmen des Forschungsprojekt es zur Auslagerung von Edel und Duplexstählen in Straßentunneln N2 - Aufgrund der stark korrosiven Atmosphäre in Tunnelbauwerken kommt es aufgrund von Reinigungs- und Sanierungsmaßnahmen an Ein- und Anbauteilen aus nichtrostendem Stahl häufig zu wartungsbedingten Verkehrsbeeinflussungen und Tunnelsperrungen. Bislang ist nur eine kleine Gruppe rostfreier Edelstähle für die Verwendung in Tunnelbauwerken zugelassen. Im Sinne einer mittel- bis langfristigen Reduktion von Wartungsarbeiten besteht jedoch großes Interesse, die Einsatzmöglichkeiten alternativer nichtrostender Stähle zu erhöhen. Um dies zu ermöglichen, entwickelten die Bundesanstalt für Materialforschung und -prüfung (BAM), gemeinsam mit dem Landesbetrieb Straßenbau NRW, in Zusammenarbeit mit der Informationsstelle Edelstahl Rostfrei (ISER), mit Unterstützung des Edelstahlherstellers Outokumpu und der Wilhelm Modersohn GmbH & Co. KG ein Forschungsprojekt zur Auslagerung von nichtrostenden Duplexstählen in Straßentunnel. Im Oktober 2019 beteiligte sich der Landesbetrieb Straßen, Brücken und Gewässer in Hamburg und ermöglichte die Auslagerung im Elbtunnel auszuweiten. T2 - Sitzung des ISER Ausschusses Marketing CY - Düsseldorf, Germany DA - 20.11.2019 KW - Duplex KW - Outokumpu: Stainless steel KW - Duplexstahl KW - Korrosion KW - Tunnel KW - Tunnelatmosphöre PY - 2019 AN - OPUS4-49814 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -