TY - CONF A1 - Witte, Julien A1 - Treutler, Kai A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Influence of Microstructure on the Machinability and Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing global focus on energy and resource efficiency has stimulated a growing interest in additive manufacturing. AM offers economic advantages and enables an efficient use of materials. However, AM components often require subsequent mechanical post-processing, such as machining (e.g. milling), to achieve the final contours or surfaces. This is a particular challenge due to the heterogeneous and anisotropic nature of AM structures, which affect machining and the resulting component properties. High-performance materials such as iron aluminide represent a promising alternative to conventional high-temperature materials with a significant economic advantage. However, the strength and hardness properties, which are advantageous for applications in highly stressed lightweight components, pose a challenge for economical machining in addition to the AM microstructure properties. The difficult-to-cut material causes accelerated tool wear and insufficient surface quality. This study shows that crack-free additive manufacturing of the three-component system of iron-nickel-aluminum is possible, and advantages in terms of machinability compared to FeAl-AM components are achieved. The more homogeneous microstructure leads to a reduction in cutting forces, with positive effects on the machinability and optimized surface integrity. Ultrasonic assisted milling (USAM) offers great potential to address the major challenges posed by difficult-to-cut materials and additively manufactured weld structures. Therefore, this study focuses on assessing the transferability of previous positive results by USAM to the selected iron aluminide alloys. The machinability of the aluminides is analyzed by varying significant influencing variables in finish milling experiments and evaluated in terms of the loads on the tool and the resulting surface integrity. T2 - AA Meeting of Commission IX ‘Behavior of Metals subject to Welding’ CY - Rhodes, Greece DA - 08.07.2024 KW - Iron aluminide KW - Additive manufacturing KW - Machinability KW - Surface integrity KW - Ultrasonic-assisted milling PY - 2026 SP - 1 EP - 16 AN - OPUS4-65530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holm, O. A1 - Leube, Peter A1 - Vogel, Christian A1 - Kennedy, E. A1 - Stockenhuber, M. A1 - Lucas, J. A1 - Truong, T. A1 - Rappé, A. A1 - Lu, W. A1 - Blotevogel, J. T1 - Thermische Zerstörung von PFAS in der Sondermüllverbrennung: Einfluss von Temperatur und PFAS-Konzentration N2 - Aufgrund ihrer einzigartigen molekularen Beschaffenheit werden per- und polyfluorierte Alkylsubstanzen (PFAS) in vielen unterschiedlichen Produkten und Anwendungsgebieten eingesetzt. Da sie generell eine hohe Persistenz aufweisen und je nach individueller Struktur unterschiedlich mobil sind, sind sie mittlerweile in allen Umweltkompartimenten und ubiquitär nachzuweisen. Ihre potenzielle (ökologische) Toxizität birgt dabei erhebliche Umweltrisiken, weshalb PFAS in den letzten Jahren mehr und mehr in den Fokus von Umweltverbänden und -behörden gelangten. Gleichzeitig beschäftigen sich Forschungseinrichtungen mit der möglichst weitreichenden Entfernung aus der Umwelt sowie mit deren (anschließender) Zerstörung. Im Projekt ER24-4073 „Untersuchung des thermischen Abbaus von PFAS in einer kommerziellen Großanlage zur Verbrennung gefährlicher Abfälle“, welches vom U.S. Department of Defense (DoD ) über das Strategic Environmental Research and Development Program (SERDP) gefördert wird, untersuchen deutsche, australische und amerikanische Partner die Behandlung von PFAS-haltigen Abfallströmen in einer großtechnischen Verbrennungsanlage, um die Einsatzbereitschaft, Machbarkeit und Sicherheit dieser Zerstörungsmethode zu demonstrieren. T2 - Berliner Konferenz Abfallwirtschaft und Energie CY - Berlin, Germany DA - 28.01.2026 KW - Per- and polyfluoroalkyl substances (PFAS) KW - Verbrennung KW - Kontaminierter Boden PY - 2026 SN - 978-3-911006-65-1 SP - 66 EP - 77 PB - TK Verlag AN - OPUS4-65513 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Sanchez Trujillo, Camila Andrea A1 - Hau, Julia A1 - Niederleithinger, Ernst A1 - Malm, F. T1 - Structural Monitoring in an Urban Underground Metro Station Using Cod N2 - Active ultrasonic monitoring with coda wave interferometry has demonstrated its potential for structural Health monitoring in concrete structures. This study investigates its application using ultrasonic transducers embedded in the ceiling of a subway station in Munich, Germany. We evaluate the impact of environmental conditions, specifically electromagnetic interference and temperature, on data quality, as well as the influence of regular loading from passing trams. Results indicate that electromagnetic interference significantly affects measurements, while temperature effects remain minimal due to the station’s stable thermal environment. Long-term measurements and a controlled load test show that both dynamic and static loading from trams induce ultrasonic velocity changes of only 0.01%–0.06%. Although the experiment demonstrates the capacity to detect structural responses and supports the feasibility of long-term monitoring, improved electromagnetic shielding and Hardware reliability are required for successful future applications. T2 - NDT-CE 2025 CY - Izmir, Turkey DA - 24.09.2025 KW - Coda Wave Interferometry (CWI) KW - Structural health monitoring (SHM) KW - Concrete KW - Ultrasonic testing KW - Urban infrastructure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654619 DO - https://doi.org/10.58286/31706 SN - 1435-4934 SP - 1 EP - 10 PB - e-Journal of Nondestructive Testing (eJNDT) AN - OPUS4-65461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Zaripova, Gulshat A1 - Brinkman, Nienke A1 - Gebraad, Lars A1 - Boehm, Christian A1 - Trattnig, Horst T1 - Digital Twin for the Simulation of Acoustic Emission Wave Propagation in Prestressed Concrete Elements N2 - In the 1950s, the use of prestressed concrete construction for bridges became widespread. The lack of experience in the early days causes problems today regarding a combination of corrosion and fatigue of the tendons. Wire breaks can lead to structural failure without warning. Acoustic emission analysis is the only reliable monitoring method to prevent catastrophic damage. Through an acoustic simulation of the structure and its fusion with measurement data, the research project "Digital Twin for the Simulation of Acoustic Emission Wave Propagation in Prestressed Concrete Elements" lays the foundation for optimizing the monitoring systems. T2 - III AE 2025 Nagoya CY - Nagoya, Japan DA - 04.11.2025 KW - Acoustic emission monitoring KW - Digital acoustic twin KW - Prestressed concrete bridge KW - Wire break KW - Stress corrosion cracking PY - 2025 SP - 113 EP - 117 PB - Japanese Society for Non-Destructive Inspection (JSNDI) AN - OPUS4-65456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulkarni, Kajol A1 - Kemmler, Samuel A1 - Schwartz, Anna A1 - Gedik, Gülçin A1 - Chen, Yanxiang A1 - Papageorgiou, Dimitrios A1 - Kavroulakis, Ioannis A1 - Iakymchuk, Roman T1 - Harvesting energy consumption on European HPC systems: Sharing Experience from the CEEC project N2 - Energy efficiency has emerged as a central challenge for modern high-performance computing (HPC) systems, where escalating computational demands and architectural complexity have led to significant energy footprints. This paper presents the collective experience of the EuroHPC JU Center of Excellence in Exascale CFD (CEEC) in measuring, analyzing, and optimizing energy consumption across major European HPC systems. We briefly review key methodologies and tools for energy measurement as well as define metrics for reporting results. Through case studies using representative CFD applications (waLBerla, FLEXI/GALÆXI, Neko, and NekRS), we evaluate energy-to-solution and time-to-solution on diverse architectures, including CPU- and GPU-based partitions of LUMI, MareNostrum5, MeluXina, and JUWELS Booster. Our results highlight the advantages of accelerators and mixed-precision techniques for reducing energy consumption while maintaining computational accuracy. Finally, we advocate the need to facilitate energy measurements on HPC systems in order to raise awareness, teach the community, and take actions toward more sustainable exascale computing. T2 - SCA/HPCAsiaWS 2026: SCA/HPCAsia 2026 Workshops: Supercomputing Asia and International Conference on High Performance Computing in Asia Pacific Region Workshops CY - Osaka , Japan DA - 26.01.2026 KW - Energy consumption KW - eEergy measurement KW - Energy-to-solution KW - Mixed-precision KW - HPC KW - CFD PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654175 DO - https://doi.org/10.1145/3784828.3785161 SP - 40 EP - 49 PB - ACM CY - New York, NY, USA AN - OPUS4-65417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kunji Purayi, Sruthi Krishna A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien T1 - Anisotropy investigation of a single crystal superalloy using laser-spot infrared thermography N2 - Thermal property investigation of anisotropic materials such as single crystal superalloys are still in interest of practical and fundamental reasons but remains challenging using conventional testing methods. In this study, a single crystal superalloy is tested using laser-spot thermography, and its thermal anisotropy is investigated. Determining anisotropic thermal conductivity at microscopic scales is challenging, as it appears isotropic at the macroscopic scale. Infrared thermography is one of the best-known techniques for measuring material heat transfer properties and facilitating visualization of temperature distribution through the specimen. The proposed study uses the active thermography method of laser-spot infrared thermography, in which a laser spot is focused onto the sample surface and the thermal response is captured from the surface of the specimen with an infrared camera. A detailed analysis of temperature gradients and heat diffusion patterns aids in the measurement of thermal conductivity values along the sample's different crystallographic directions. The directional bonding characteristics and inherent crystallographic structure of the alloy account for the inplane thermal conductivities calculated from experimental thermal measurements. The laser-spot thermography method has proven to be an effective tool for mapping the material's thermal conductivity anisotropy with high sensitivity and high spatial and temporal resolution. The investigation into the anisotropy of the material provides an insight into heat flow in the structure and helps in optimizing the design and overall performance of the material system. T2 - 17th International Conference on Quantitative InfraRed Thermography 2024 CY - Zagreb, Croatia DA - 01.07.2025 KW - Infrared thermography KW - Anisotropy KW - Laser-spot thermography PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653877 DO - https://doi.org/10.21611/QIRT-2024-075 SP - 1 EP - 6 PB - QIRT Council AN - OPUS4-65387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Genga, R. M. A1 - Conze, S. A1 - Berger, L.M. A1 - Pötschke, J. A1 - Witte, Julien A1 - Schröpfer, D. A1 - Cermak, A. A1 - Zeman, P. A1 - Ngongo, S. A1 - Janse van Vuuren, A. T1 - Enhanced Fe and Ni bonded NbC Laser Surface Engineered based Hardmetals: Alternative Cutter Materials for Electric Vehicle Applications N2 - The efforts to substitute both tungsten carbide (WC) and cobalt (Co) has gained prominence in recent years due to the classification of Co as a carcinogen and the classification of Co and W as critical raw materials in the EU as well as within regulations of the U.S. National Toxicology Program. In this study, substitution of both WC and Co with advanced hardmetals consisting of NbC with Ni and Fe-based metal binders are investigated for their use of machining of metals used electric vehicle manufacturing. The developed NbC-Ni/Fe based hardmetals employ a Machining Property Led Tailored Design (MPLTD) approach. This reverse engineering strategy uses data from machining performance to guide the development of microstructural, mechanical, and behavioral properties. Four advanced NbC-based hardmetals were produced, two with Ni-based binders and two with Fe-based binders, along with two reference materials for comparison (WC-Co and straight NbC-12Ni). Hardmetals were characterized using field emission scanning electron microscopy (FE-SEM), annular dark-field scanning transmission electron microscopy (ADF-STEM), Vickers hardness, fracture toughness, and elastic moduli. Cutting tool inserts were manufactured from the developed hardmetals and enhanced using femto-second laser surface engineering. The inserts’ performance was evaluated through face milling tests on AZ31 automotive magnesium alloy, providing insights into their suitability for high-demand industrial applications. T2 - 21. Plansee Seminar CY - Reutte, Österreich DA - 01.06.2025 KW - Niobium carbide KW - Alternative binders KW - Alternative hard phases KW - Face milling KW - AZ31 magnesium alloy PY - 2025 VL - 2025 SP - 1 EP - 10 AN - OPUS4-65382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hirsch, Philipp Daniel A1 - Kunji Purayil, Sruthi Krishna A1 - Lecompagnon, Julien A1 - Pech May, Nelson Wilbur A1 - Ziegler, Mathias ED - Maldague, X. T1 - Robotic-Assisted 3D Scanning and Laser Thermography for Crack Inspection on Complex Components N2 - The integration of automation and robotics into non-destructive testing (NDT) marks a significant advancement in evaluating complex components. This paper introduces a novel approach using robotic-assisted laser thermography combined with automated 3D scanning to detect and analyze cracks in complex structures. The system uses an integrated line scanner with a robotic arm to capture high-resolution data, creating detailed 3D models for adaptive path planning and precise alignment correction. Laser thermography, based on localized heating and the "flying spot" approach, detects surfacenear cracks with high precision. Crack detection is achieved using the Canny algorithm optional on Fourier-transformed thermograms, offering robust results with minimal computation. This study highlights the potential of robotic-assisted 3D scanning and laser thermography as efficient and precise methods for crack inspection, advancing NDT technologies and ensuring the structural integrity of modern components. T2 - 17th International Conference on Quantitative InfraRed Thermography 2024 CY - Zagreb, Croatia DA - 01.07.2024 KW - Thermography KW - Non-destructive testing KW - Laser line KW - Robotic arm KW - Defect identification KW - Crack detection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653809 DO - https://doi.org/10.21611/qirt-2024-078 SP - 1 EP - 8 PB - QIRT Council AN - OPUS4-65380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ricci, M. A1 - Laureti, S. A1 - Ziegler, Mathias ED - Maldague, X. T1 - Practical study on the thermographic detectability of internal defects using temporally structured laser heating N2 - Modern laser systems have proven to be highly versatile heat sources for active thermographic testing. Compared to more traditional light sources, e.g. flash or halogen lamps, their output power can be easily modulated at high rates, allowing a wide variety of complex excitations to be realized. Although their total optical output power can be theoretically scaled to arbitrary values, the maximum output power is practically limited by many factors: the maximum power that the sample under test can absorb without altering the lighted surface itself, the trade-off between irradiance and inspected area, the cost of the laser system, etc. Furthermore, when working with spatial modulator systems, the output power must be limited to avoid damaging such devices. Nevertheless, to guarantee a sufficient amount of heating even for highly thermally conductive materials and/or deeply buried defects, the heating times can be extended, e.g., either by using step heating, long pulse thermography, or by lock-in thermography with a continuously modulated heating. However, for all these approaches, the ranging capabilities of the thermographic defect detection are reduced due to the limited frequency content of the excitation. To tackle this problem, i.e. to increase the excitation energy while preserving its frequency content, new approaches have been developed in the last two decades, among them the use of coded excitations in combination with pulse-compression, and the use of multiple lock-in analysis or a frequency modulated excitation signal. The challenges of such temporally structured heating techniques are manifold, for example, the DC component inherent in optical heating must be taken into account. In general, a wider frequency bandwidth or greater variability of the frequency components also means greater complexity for signal generation and data processing. In this paper, temporally structured excitation schemes with different degrees of complexity are compared on a high-power laser system. T2 - 17th International Conference on Quantitative InfraRed Thermography 2024 CY - Zagreb, Croatia DA - 01.07.2024 KW - Thermography KW - Laser KW - NDT KW - Coded excitation KW - Defect identification PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653790 DO - https://doi.org/10.21611/qirt-2024-077 SN - 2371-4085 SP - 1 EP - 9 PB - QIRT Council AN - OPUS4-65379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krankenhagen, Rainer A1 - Chaudhuri, Somsubhro A1 - Pittner, Andreas A1 - Winterkorn, Rene A1 - de Finis, Rosa A1 - Palumbo, Davide A1 - Galietti, Umberto T1 - Thermographic investigation of the anisotropic behaviour of additively manufactured AISI316 steel using DED-Arc N2 - Additive manufacturing is one of the most promising techniques for industrial production and maintenance, but the specifics of the layered structure must be considered. The Direct Energy Deposition-Arc process enables relatively high deposition rates, which is favourable for larger components. For this study, specimens with different orientations were prepared from one AISI316 steel block – parallel and orthogonal to the deposition plane. Quasistatic tensile loading tests were carried out, monitored by an infrared camera. The obtained surface temperature maps revealed structural differences between both orientations. The consideration of surface temperature transients yields more details about the behaviour of the material under tensile loading than the conventional stress-strain-curve. These preliminary investigations were supplemented by thermographic fatigue trials. Although the anisotropy was also observed during fatigue loading the fatigue behaviour in general was the same, at least for both inspected specimens. The presented results demonstrate the abilities and the potential of thermographic techniques for tensile tests. T2 - 17th Quantitative Infrared Thermography Conference CY - Bologna, Italy DA - 07.07.2025 KW - Thermoelastic effect KW - Wire-arc-additive manufacturing KW - thermal stress analysis KW - fatigue testing PY - 2026 DO - https://doi.org/10.21611/qirt-2024-029 SP - 1 EP - 8 AN - OPUS4-65372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -