TY - CONF A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Liepold, Philipp A1 - Kannengießer, Thomas A1 - Schröpfer, Dirk T1 - Einfluss der Schweiß- und Prüfparameter bei der Heißrissbewertung hochfester Schweißzusatzwerkstoffe N2 - Die Heißrissneigung beim Schweißen kann mittels einer ganzen Reihe von Prüfverfahren ermittelt werden. Eine etablierte Methode ist die sogenannte Varestraint-Prüfung, welche auch an der Bundesanstalt für Materialforschung und -prüfung (BAM) als modifizierter Varestraint/Transvarestraint-Test (MVT) zum Einsatz kommt. Die Ergebnisse von Varestraint-Prüfungen hängen jedoch stets in unter-schiedlichem Maße von der individuellen Prüfmaschinenauslegung und den verwendeten Prüfparametern ab. Dies kann zu einer uneinheitlichen Bewertung des Rissverhaltens führen, wenn die Risslänge konventionell als Kriterium für die Rissneigung herangezogen wird. Scheinbare Abhängigkeiten von Prozessparametern erschweren dann die Interpretation der Ergebnisse. Eine neuartige Bewertungsmethodik entkoppelt den Maschineneinfluss vom Materialverhalten und verwendet die Dehnrate als Risskriterium. T2 - 5. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 23.02.2023 KW - Heißrisse KW - Varestraint-Test PY - 2023 SN - 978-3-8440-9105-2 SN - 2364-0804 VL - 12 SP - 357 EP - 365 PB - Shaker CY - Düren AN - OPUS4-57993 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, Michael T1 - Flexible Magnetic Sensors Enabling Novel Measuring Capabilities N2 - Since several years, magnetic sensor elements are available in fully flexible architectures that often reveal identical sensing properties, compared to their rigid counterparts, while being bent severely and repeatedly. Nowadays, a variety of magnetic senor principles, including well known Hall, AMR and GMR but also more exotic PHE and AHE sensors were demonstrated on such flexible platforms. The novel properties of being thin, lightweight, shapeable, and wearable enable magnetic sensory systems to be utilized in vicinities and conditions that are inaccessible for rigid and microchip-based sensors. T2 - SMSI 2023 - Sensor and Measurement Science International CY - Nuremberg, Germany DA - 08.05.2023 KW - Flexible electronics KW - Flexible sensors KW - Magnetic sensors KW - Novel applications KW - In-situ sensing PY - 2023 UR - https://www.ama-science.org/proceedings/details/4402 SN - 978-3-9819376-8-8 DO - https://doi.org/10.5162/SMSI2023/C5.2 SP - 175 EP - 176 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-58039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Scheidemann, Robert T1 - Test Facilities for Radioactive Materials Transport and Storage Packagings at BAM N2 - BAM acts as authority and for service in safety assessment of packages for transport and storage of radioactive materials. We offer extensive test capabilities and application of analytical methods for design verification and simulation for all types of packages for the transport and storage of radioactive materials according with the international IAEA Regulations for the safe transport and for national storage acceptance criteria. BAM operates several test facilities for drop and stacking testing, leak testing and thermal testing. The large drop test tower allows dropping full-scale specimens up to 200,000 kg in any drop orientation as requested. The comprehensive test facilities combined with long-term experience, newest equipment and measurement devices according to the latest state-of-the-art technology ensures realisation of complex test campaigns for package safety evaluation. Beyond that, non-destructive and destructive material test devices and experts are available. Equipment and application of all kinds of typical measurement categories can be offered for testing campaigns. In recent years we performed testing of full-scale type B package models with complex handling and preparation procedures. The results were contributed for different package design approval procedures. Type A packages mainly designed for medical related transport purposes, were continuously tested according to the transport regulations over recent years as well. Moreover, we work on research topics with relevance to package safety. The mechanical behaviour of lid closure systems under transport and storage conditions and the thermal behaviour of impact limiters were recently of special importance for the assessment competencies of BAM and were investigated under use of our test facilities. The paper describes the test facilities and capabilities for package design safety evaluation at BAM and shows examples from our recent work. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - IAEA KW - Fire test KW - Drop testing KW - Transport KW - Package PY - 2023 SP - 1 EP - 12 AN - OPUS4-57967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - COMPDYN 2023 CY - Athen, Greece DA - 12.06.2023 KW - Kinematic Interaction KW - Inertial Interaction KW - Surface Foundation KW - Pile Foundation KW - High-Rise Building PY - 2023 SP - 1 EP - 14 PB - NTUA CY - Athens AN - OPUS4-57959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - XII International Conference on Structural Dynamics CY - Delft, The Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer function KW - Modal force spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge KW - Long-span bridge PY - 2023 SP - 1 EP - 10 PB - TU Delft CY - Delft AN - OPUS4-57961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations - the emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-57962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nattuveettil, Keerthana A1 - Brunner, Nanine A1 - Tiebe, Carlo A1 - Thomas, Marcus A1 - Melzer, Michael A1 - Bartholmai, Matthias A1 - Johann, Sergej A1 - Neumann, Patrick P. T1 - Digital approach of certification in Quality Infrastructure N2 - QI-Digital is a joined project aiming at digitalising Quality Infrastructure (QI) processes involving standardization, conformity assessment, accreditation, metrology, and market surveillance [1]. Federal institute of material research and testing (BAM) is working on the creation of a digital calibration certifi-cate (DCC) to achieve digital metrological traceability and conformity assessment. The utilisation of machine readable and executable DCCs in the XML format is demonstrated on an example of a tem-perature measurement at a hydrogen refueling station. The certificates will be retrieved and analysed automatically at a Process Control System or at a Digital Twin. T2 - SMSI 2023 Conference CY - Nürnberg, Germany DA - 08.05.2023 KW - Quality Infrastructure KW - Digital Certificates KW - Temperature calibration KW - Digitalisation KW - Hydrogen technology PY - 2023 DO - https://doi.org/10.5162/SMSI2023/A3.4 SP - 51 EP - 52 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-57964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shaheen, Sabahat A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Earth’s near-surface characterisation using phi-OTDR based on geometric phase N2 - Phase-sensitive OTDR based on geometric phase for the first time detects surface waves generated by quarry blasts of 25 kg explosives. Inversion of dispersion curves provides depth profiles of shear-wave velocities of surface waves. T2 - Optica Sensing Congress CY - Munich, Germany DA - 30.07.2023 KW - Geophysics KW - Geometric Phase KW - Distributed Fiber Optic Sensor KW - Coherent Heterodyne KW - Surface waves PY - 2023 SP - 1 EP - 2 AN - OPUS4-58044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Sanchez Trujillo, Camila Andrea A1 - Niederleitinger, Ernst T1 - Ultrasonic monitoring of large-scale structures – input to engineering assessment N2 - Ultrasonic coda wave interferometry can detect small changes in scattering materials like concrete. We embedded ultrasonic transducers in the Gänstorbrücke Ulm, a monitored road bridge in Germany, to test the methodology. Since fall 2020, we've been monitoring parts of the bridge and comparing the results to commercial monitoring systems. We calculate signal and volumetric velocity changes using coda waves, and long-term measurements show that the influence of temperature on strains and ultrasound velocity changes can be monitored. Velocity change maps indicate that different parts of the bridge react differently to environmental temperature changes, revealing local material property differences. A load experiment with trucks allows calibration to improve detectability of possibly damaging events. Our work focuses on measurement reliability, potential use of and distinction from temperature effects, combination with complementary sensing systems, and converting measured values to information for damage and life cycle assessment. T2 - IALCCE 2023 CY - Milano, Italy DA - 02.07.2023 KW - Ultrasonic KW - Monitoring KW - Bridge KW - NDT KW - coda PY - 2023 SP - 1 EP - 8 PB - IALCCE CY - Milan AN - OPUS4-58047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Krebber, Katerina T1 - Novel fading suppression method for distributed optical fiber acoustic sensing N2 - A universal method based on alternating pulse widths is proposed to suppress the signal fading for all distributed acoustic sensors (DASs) and experimentally demonstrated by one DAS system based on a Mach-Zehnder interferometer. T2 - Optica Sensing Congress CY - Munich, Germany DA - 30.07.2023 KW - Distributed fiber sensing KW - Acoustic sensing KW - Fading suppression KW - Structural health monitoring PY - 2023 SP - 1 EP - 2 AN - OPUS4-58048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -