TY - CONF A1 - Günster, Jens A1 - Meyer, Lena T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Metrology for Additively Manufactured Medical Implants: The MetAMMI project N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - X-ray computed tomography PY - 2018 AN - OPUS4-45926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Günster, Jens T1 - Powder based Additive Manufacturing in Space N2 - Abstract of the event: 'The area of New Space is a vastly growing and dynamic field with a high innovative potential and many exciting ideas. After decades where activities in space were dominated and funded mainly by governmental agencies, a new industry is forming and new business models are being developed around ideas like satellite-based internet, space travel, space mining, geo-monitoring etc. For space applications, lightweight design is crucial to keep the costs at a minimum. This Innovation Day will introduce the field of New Space and present the variety of exciting opportunities that arise for composites based on their excellent lightweight potential.' Another research area is now arising in the field of 3D printing or additive manufacturing of fiber composite materials in space. At the event, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications. T2 - CU Innovation Day - New opportunities and applications in space with composites CY - Online meeting DA - 29.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Microgravity KW - Powder PY - 2022 AN - OPUS4-54559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Paul, Andrea A1 - Kranzmann, Axel A1 - Hilgenberg, Kai A1 - Pittner, Andreas A1 - Bruno, Giovanni A1 - Sommer, Konstantin A1 - Gumenyuk, Andrey T1 - Quality control in additive manufacturing via in-situ monitoring and non-destructive testing N2 - More than 80 representatives of SMEs, industrial companies and research institutes met on September 12 at the workshop "Challenges in Additive Manufacturing: Innovative Materials and Quality Control" at BAM in Adlershof to discuss the latest developments in materials and quality control in additive manufacturing. In special lectures, researchers, users and equipment manufacturers reported on the latest and future developments in additive manufacturing. Furthermore, funding opportunities for projects between SMEs and research institutions on a national and European level were presented. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - Quality control KW - Non-destructive testing KW - In-situ monitoring PY - 2018 AN - OPUS4-46072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Maierhofer, Christiane A1 - Bruno, Giovanni A1 - Rethmeier, Michael A1 - Hilgenberg, Kai A1 - Mishurova, Tatiana A1 - Straße, Anne T1 - AM activities at BAM with focus on process monitoring N2 - The presentation gives an overview of current projects in additive manufacturing at BAM. In particular, the results of the ProMoAm project were presented. T2 - VAMAS - Materials Issues in Additive Manufacturing CY - Berlin, Germany DA - 25.06.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Thermography KW - Data Fusion KW - In-situ monitoring PY - 2018 AN - OPUS4-45620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization for emerging technologies - Additive manufacturing case study N2 - This was a short presentation on the role of Standards and standardization for the development and diffusion of an emerging technology - using additive manufacturing as an example. T2 - 6th Annual Meeting of the Indo-German Working Group on Quality Infrastructure CY - Berlin, Germany DA - 17.01.2019 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2019 AN - OPUS4-47397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Kolsch, Nico A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - In-space manufacturing (ISM) provides the opportunity to manufacture and repair critical components on future human spaceflight missions. For explorations to Mars and beyond, ISM is a key strategy not only due to the long travel distances and high costs of supply from earth but also to be able to safely work in space for years. Human spaceflight is still dependent on shipments from earth that can fail for several reasons. ISM is a valuable alternative to ensure the timely and safe resupply of space missions. With additive manufacturing (AM) technologies, components are built directly from a 3D computer-aided-design (CAD) model which offers the advantages of freedom of design and the production of complex and ready-to-use parts. A virtual tool box with 3D models in space or the supply of information instead of components from earth to space can strongly benefit future missions. For industrial use, most research has focused on laser based additive manufacturing processes such as laser beam melting (LBM) where metallic powder particles are spread into a uniform powder bed and melted by a laser to the desired shape. In the absence of gravity, the handling of metal powders, which is essential for the process, is challenging. We present an evolution of an AM system, where a gas flow throughout the powder bed is applied to stabilize the powder bed. This is needed to compensate for the missing gravitational forces in microgravity experiments on parabolic flight campaigns. The system consists of a porous building platform acting as a filter for the fixation of metal particles in a gas flow. It is driven by reduced pressure established by a vacuum pump underneath the platform. The system creates a drag force that directs the particles towards the porous building platform, similar to the effect of the gravitational force. The AM system with its gas-flow-assisted powder deposition has been tested in several parabolic flight campaigns, and stainless-steel powder has successfully been processed during microgravity conditions. Different powder recoating mechanisms have been investigated to assess the homogeneous distribution of the powder as well as the attachment of the next layer to the powder bed. These mechanisms included different container designs with parallel double blades and with a V-shape at the bottom, and a roller recoating system. The samples presented are the first metal parts ever manufactured using LBM in μ-gravity. In addition to manufacturing in a μ-gravity environment, the experiments have shown the feasibility to manufacture components at different accelerations during the parabolic flight: hyper gravity (1.8 g), μ-gravity (< 0.01 g) and 1 g. Recent results will also be presented describing the application of this LBM setup in a parabolic flight campaign with mixed lunar, martian and µ-gravity acceleration, during which the processing of a lunar regolith simulant powder was tested. For ISM, the development and testing of the proposed AM system demonstrates that LBM can be considered a viable technology for the manufacturing of metal and ceramic parts in a μ-gravity or reduced-gravity environment. T2 - International Conference on Advanced Manufacturing CY - Online meeting DA - 07.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Laser beam melting KW - Microgravity KW - Stainless steel KW - Lunar regolith simulant PY - 2022 AN - OPUS4-54450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on an instrumental design and operational parameters, which require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In the presence of surface defects, the temperature field is distorted in a specific manner that depends on shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for monitoring the process: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows for a cautious inference that optical spectroscopy can detect surface defects and, possibly, predict their characters, e.g., inner or protruding. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijon, Spain DA - 30 May 2022 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2022 AN - OPUS4-55063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - BAM Characterization on Capabilities in Additive Manufacturing N2 - Quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing, with particular focus on additively manufactured materials. I will also show how X-ray refraction computed tomography (CT) and Neutron diffraction can be highly complementary to classic absorption CT, being sensitive to internal interfaces and residual stress analysis, respectively. T2 - Treffen des Konsortium AeroMatForAM CY - Köln, Germany DA - 16.03.2017 KW - Neutronenbeugung KW - Eigenspannungen KW - Additive Fertigung KW - Computertomographie KW - Röntgenrefraktion KW - X-ray Refraction KW - Additive Manufacturing KW - Computed Tomography KW - Residual Stress analysis KW - Neutron Diffraction PY - 2017 AN - OPUS4-39657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Bettge, Dirk A1 - Nolze, Gert T1 - Microstructure analysis in AM 316L N2 - Additive manufacturing (AM) offers diverse advantages compared to conventional manufacturing. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), was analyzed and compared to microstructure of 316L hot rolled material. Methods used for analysis are microprobe, optical microscopy and electron backscatter diffraction. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - selective laser melting KW - microstructure analysis PY - 2019 AN - OPUS4-49880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Nadammal, Naresh T1 - Monitoring additive manufacturing N2 - Additive manufacturing (AM) processes allow a high level of freedom in designing and producing components for complex structures. They offer the possibility of a significant reduction of the process chain. However, the large number of process parameters influence the structure and the behavior of AM parts. A thorough understanding of the interdependent mechanisms is necessary for the reliable design and production of safe AM parts. In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - Conaendi&IEV 2021 CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung PY - 2021 AN - OPUS4-52241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Tiede, Tobias A1 - Mishurova, Tatiana A1 - Laquai, René A1 - Bruno, Giovanni T1 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures N2 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - SLS KW - X-ray computed tomography KW - Refraction KW - Neutron diffraction KW - Additive manufacturing KW - Industry 4.0 PY - 2018 AN - OPUS4-45924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolsch, Nico A1 - Meyer, Lena A1 - Zocca, Andrea A1 - Wilbig, Janka A1 - Günster, Jens T1 - Enabling online quality control of powder deposition for 3d printing in microgravity N2 - 3D printing or additive manufacturing in space is of great value for long-term human spaceflight missions and space stations, conveniently offering access to a ‘virtual warehouse’ of tools and spare parts on the push of a button. The process only needs one type of feedstock such as powder or filament and only as much material as the final part requires, giving it a huge weight benefit over traditional subtractive methods. While 3D printers are already operational on the ISS since 2014, the utilized processes are only capable of manufacturing relatively low strength parts from polymers not suitable for many tools or critical components. To gain access to high quality metal prints, a modified Laser Powder Bed Fusion (LPBF) process was developed to stabilize the critical powder bed in microgravity through a gas flow [2]. This setup was able to generate a (miniature) steel wrench during parabolic flights, but a reliable layer deposition has raised challenges due to the combination of gas flow parameters with microgravity conditions. Furthermore, the quality and density of the powder bed, which is critical for the process, cannot be examined afterward on the ground. This is due to hyper gravity phases during the flight that are influencing the properties of the powder bed. In this paper, the challenges of the layer deposition are revised, and the subsequent evolution of the recoating system explained. Later, the challenges of an in-situ quality control, evaluation, and quantification of the properties of the powder bed are examined. As a solution, a high-resolution line-scanner is proposed and its implementation int the compact LPBF system demonstrated. Its ability to measure common defects such as ridges in the deposited layer is shown in experiments at normal gravity. As an illustration, Figure 1 shows an extreme case of the formation of ridges. T2 - European Conference on Spacecraft Structures Materials and Environmental Testing CY - Toulouse, France DA - 28.03.2023 KW - Additive manufacturing KW - In-space manufacturing KW - Online quality control KW - Microgravity KW - Powder deposition PY - 2023 AN - OPUS4-57249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter A1 - Becker, Tina A1 - Oster, Simon A1 - Metz, C. A1 - Altenburg, Simon T1 - In-situ defect detection for laser powder bed fusion with active laser thermography N2 - Defects are still common in metal components built with Additive Manufacturing (AM). Process monitoring methods for laser powder bed fusion (PBF-LB/M) are used in industry, but relationships between monitoring data and defect formation are not fully understood yet. Additionally, defects and deformations may develop with a time delay to the laser energy input. Thus, currently, the component quality is only determinable after the finished process. Here, active laser thermography, a non-destructive testing method, is adapted to PBF-LB/M, using the defocused process laser as heat source. The testing can be performed layer by layer throughout the manufacturing process. The results of the defect detection using infrared cameras are presented for a custom research PBF-LB/M machine. Our work enables a shift from post-process testing of components towards in-situ testing during the AM process. The actual component quality is evaluated in the process chamber and defects can be detected between layers. T2 - 2023 Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - Additive Manufacturing KW - Additive Fertigung KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-58137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, D. A1 - Sagradov, I. A1 - Roszak, R. A1 - Sparr, H. A1 - Franke, R. A1 - Ziegenhorn, M. A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Material and damage behaviour of 3D printed PA12 under cyclic loading N2 - The material and damage behaviour of additively manufactured polyamide 12 (PA12) under dynamic loading was characterized by cyclic tests and microstructure analysis. The results were used to develop a numerical material and damage model. In a recent study, it was shown that the material and damage behaviour of 3D printed PA12 under quasistatic loading is simulated in a realistic way by coupling the material model by Chaboche and the damage model by Gurson-Tvergaard-Needleman (GTN). Using microscopy, X-ray refraction, and computed tomography, a porosity of about 5% was evaluated. These results served as a starting point for the present work. For the dynamic load, both the previously used Chaboche model and the GTN model were extended. Furthermore, the temperature was measured during the experiment and the self-heating effect was observed. Therefore, a temperaturedependent material parameters for the simulation were introduced. Considering the results of mechanical experiments, microstructural investigations, and self-heating effects, a good agreement between Experiment and numerical simulation could be achieved. T2 - VI International Conference on Computational Modeling of Fracture and Failure of Materials and Structures CY - Brunswick, Germany DA - 12.06.2019 KW - Polyamide 12 KW - Selective Laser Sintering (SLS) KW - Viscoplasticity KW - Chaboche model KW - GTN model KW - X-ray refraction KW - Computed tomography PY - 2019 AN - OPUS4-48335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Maierhofer, Christiane T1 - Towards hyperspectral in-situ temperature measurement in metal additive manufacturing N2 - The industrial use of additive manufacturing for the production of metallic parts with high geometrical complexity and lot sizes close to one is rapidly increasing as a result of mass individualisation and applied safety relevant constructions. However, due to the high complexity of the production process, it is not yet fully understood and controlled, especially for changing (lot size one) part geometries. Due to the thermal nature of the Laser-powder bed fusion (L-PBF) process – where parts are built up layer-wise by melting metal powder via laser - the properties of the produced part are strongly governed by its thermal history. Thus, a promising route for process monitoring is the use of thermography. However, the reconstruction of temperature information from thermographic data relies on the knowledge of the surface emissivity at each position on the part. Since the emissivity is strongly changing during the process due to phase changes, great temperature gradients, possible oxidation, and other potential influencing factors, the extraction of real temperature data from thermographic images is challenging. While the temperature development in and around the melt pool, where melting and solidification occur is most important for the development of the part properties. Also, the emissivity changes are most severe in this area, rendering the temperature deduction most challenging. A possible route to overcome the entanglement of temperature and emissivity in the thermal radiation is the use of hyperspectral imaging in combination with temperature emissivity separation (TES) algorithms. As a first step towards the combined temperature and emissivity determination in the L-PBF process, here, we use a hyperspectral line camera system operating in the short-wave infrared region (0.9 µm to 1.7 µm) to measure the spectral radiance emitted. In this setup, the melt pool of the L-PBF process migrates through the camera’s 1D field of view, so that the radiation intensities are recorded simultaneously for multiple different wavelength ranges in a spatially resolved manner. At sufficiently high acquisition frame rate, an effective melt pool image can be reconstructed. Using the grey body approximation (emissivity is independent of the wavelength), a first, simple TES is performed, and the resulting emissivity and temperature values are compared to literature values. Subsequent work will include reference measurements of the spectral emissivity in different states allowing its analytical parametrisation as well as the adaption and optimisation of the TES algorithms. An illustration of the proposed method is shown in Fig.1. The investigated method will allow to gain a deeper understanding of the L-PBF process, e.g., by quantitative validation of simulation results. Additionally, the results will provide a data basis for the development of less complex and cheaper sensor technologies for L-PBF in-process monitoring (or for related process), e.g., by using machine learning. T2 - 21st International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Additive manufacturing KW - L-PBF KW - Hyperspectral PY - 2022 AN - OPUS4-55152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Hilgenberg, Kai T1 - In-situ defect detection in Laser Powder Bed Fusion (L-PBF) by using thermography and optical tomography N2 - Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing (AM) technologies for the production of complex metallic real part components. Due to the multitude of factors influencing process conditions and part quality and due to the layer-wise characteristic of the process, monitoring of process signatures seems to be mandatory in case of the production of safety critical components. Here, the iterative process nature enables unique access for in-situ monitoring during part manufacture. In this talk, the successful test of the synchronous use of a high-frequency infrared camera and a camera for long time exposure, working in the visible spectrum (VIS) and equipped with a near infrared filter (NIR), will be introduced as a machine manufacturer independent thermal detection monitoring set-up. Thereby, the synchronous use of an infrared camera and a VIS NIR camera combines the advantages of high framerate and high spatial resolution. The manufacture of a 316L stainless steel specimen, containing purposely seeded defects and volumes with forced changes of energy inputs, was monitored during the build. The measured thermal responses are analysed and compared with a defect mapping obtained by micro X-ray computed tomography (CT). The first results regarding methods for data analysis, derived correlations between measured signals and detected defects as well as sources of possible data misinterpretation are presented in this talk. T2 - 45. MPA Seminar - Fit for Future – Advanced Manufacturing Technologies, Materials and Lifetime CY - Stuttgart, Germany DA - 01.10.2019 KW - Data fusion KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Lack-of-fusion PY - 2019 AN - OPUS4-49386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia ED - Jakobs, K. ED - Blind, K. T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - 22nd EURAS Annual Standardisation Conference: Digitalisation: Challenge and Opportunity for Standardisation CY - Berlin, Germany DA - 28.06.2017 KW - Additive manufacturing KW - 3D Printing KW - Innovation KW - Emerging technologies KW - Standards PY - 2017 SN - 978-3-95886-172-5 VL - 2017 SP - T117 EP - T135 PB - Wissenschaftsverlag Mainz CY - Aachen ET - 1. AN - OPUS4-41020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Heinrichsdorff, F. A1 - Gordei, A. A1 - Ehlers, Henrik A1 - Kochan, J. A1 - Jahangir, H. A1 - Pelkner, Matthias A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Infrared thermography KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring PY - 2021 AN - OPUS4-52699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander T1 - In situ thermography and optical tomography in LBM - comparison to CT N2 - - Successful proof of concept of synchronous in-situ monitoring of a L-PBF process by thermography and optical tomography - Examination method for data analysis - Identification of correlations between measured signals and defects - Identification of sources of misinterpreting T2 - Workshop on Additive Manufacturing: Process , materials , simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Laser Powder Bed Fusion KW - Thermography KW - Optical Tomography KW - Computed Tomography KW - Additive Manufacturing KW - 3D printing PY - 2019 AN - OPUS4-48521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Léonard, Fabien A1 - Serrano Munoz, Itziar A1 - Bruno, Giovanni T1 - Computed tomography of SLM produced IN625 parts: From powder grains to lattice structures N2 - Im Fokus dieser Arbeit steht die computertomographische (CT) Untersuchung (Synchrotron- und Labor-CT) von IN625-Pulver und den daraus gefertigten Streben, welche wiederum zu Gitterstrukturen zusammengesetzt werden. Aufgrund der Filigranität wurde zur Fertigung dieser Proben das pulverbettbasierte selektive Laserschmelzen verwendet. Porositätsanalysen und Größenverteilungen wurden für das Pulver bei einer rekonstruierten Voxelgröße von 0,5µm ermittelt. 6,0mm lange Streben variierten im Aufbauwinkel von 30° bis 90° zur Bauplattform und zeigten so den Unterschied zwischen Up- und Down-Skin hinsichtlich der Rauigkeit und Porenverteilung. Die Gitterstrukturen konnten in-situ mit bis zu 5,0kN belastet werden, um deren Verformung computertomographisch zu erfassen. T2 - 7. VDI-TUM Expertenforum CY - Garching b. München, Germany DA - 13.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures PY - 2018 AN - OPUS4-46069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual Stress Evolution During Slot Milling for Repair Welding and WAAM of High-Strength Steel Components N2 - High-strength steels have great potential for weight optimization due to reduced wall thicknesses in many modern steel constructions. Further advances in efficiency can be achieved through the application of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM). These technologies enable the sustainable and resource-efficient manufacturing of high-strength steels into near-net-shape, efficient structures. During the production of steel structures, unacceptable defects may occur in the weld area or in the WAAM component, e.g., due to unstable process conditions. The economical solution for most of the cases is local gouging or machining of the affected areas and repair welding. With respect to the limited ductility of high-strength steels, it is necessary to clarify the effects of machining steps on the multiaxial stress state and the high design-induced shrinkage restraint. In this context, the component-related investigations in two research projects are concerned with the residual stress evolution during welding and slot milling of welds and WAAM structures made of high-strength steels with yield strengths ≥790 MPa. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyse the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and relaxation of the specimens with the initial residual stresses induced by welding. T2 - ICRS 11 - The 11th International Conference on Residual Stresse CY - Nancy, France DA - 27.03.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Reparaturschweißen KW - Gefügedegradation KW - Windenergie PY - 2022 AN - OPUS4-56708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912) is an alloy with 36% nickel and 64% iron and is generally classified as a difficult-to-cut material. Increasingly complex structures and the optimization of resource efficiency are making additive manufacturing (AM) more and more attractive for the manufacture or repair of components. Subsequent machining of AM components is unavoidable for its final contour. By using modern, hybrid machining processes, e.g., ultrasonic-assisted milling (US), it is possible to improve the cutting situation regarding the resulting surface integrity as well as the cutting force. Part I deals with the influence of the alloying elements Ti, Zr, and Hf on the microstructure and the hardness of the initial alloy 36. Part II focusses on the effect of the alloy modifications and the ultrasonic assistance on machinability as well as on the surface integrity after finish-milling. The results show a highly significant influence of the ultrasonic assistance. The cutting force during the US is reduced by over 50% and the roughness of approx. 50% compared to conventional milling (CM) for all materials investigated. Moreover, the US causes a defect-free surface and induces near-surface compressive residual stresses. CM leads to a near-surface stress state of approx. 0 MPa. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy 36 KW - Ultrasonic-assisted milling KW - Surface integrity KW - Modification of structural morphology PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566609 DO - https://doi.org/10.1007/s40194-022-01438-7 SP - 1 EP - 8 PB - Springer CY - Heidelberg AN - OPUS4-56660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ozcan, Ozlem T1 - MAPz@BAM Material Acceleration Plattform Zentrum @ BAM N2 - Die Material Acceleration Platform der BAM (MAPz@BAM) bündelt unsere Automatisierungs-Expertise auf dem Gebiet der Materialwissenschaft und -prüfung. Wir entwickeln modulare Experimentmodule, automatische Prüf- und Auswerteverfahren und setzen künstliche Intelligenz für eine effiziente und autonome Versuchsplanung, - vorhersage und Datenanalyse ein. T2 - TechConnect Adlershof: Grand Solutions CY - Berlin, Germany DA - 06.11.2023 KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - MAPz@BAM PY - 2023 AN - OPUS4-59412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ thermographic monitoring of the laser metal deposition process N2 - By allowing economic on demand manufacturing of highly customized and complex workpieces, metal based additive manufacturing (AM) has the prospect to revolutionize many industrial areas. Since AM is prone to the formation of defects during the building process, a fundamental requirement for AM to become applicable in most fields is the ability to guarantee the adherence to strict quality and safety standards. A possible solution for this problem lies in the deployment of various in-situ monitoring techniques. For most of these techniques, the application to AM is still very poorly understood. Therefore, the BAM in its mission to provide safety in technology has initiated the project “Process Monitoring of AM” (ProMoAM). In this project, a wide range of in-situ process monitoring techniques, including active and passive thermography, optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods, are applied to laser metal deposition (LMD), laser powder bed fusion and wire arc AM. Since it is still unclear which measured quantities are relevant for the detection of defects, these measurements are performed very thoroughly. In successive steps, the data acquired by all these methods is fused and compared to the results of reference methods such as computer tomography and ultrasonic immersion testing. The goal is to find reliable methods to detect the formation of defects during the building process. The detailed acquired data sets may also be used for comparison with simulations. Here, we show first results of high speed (> 300 Hz) thermographic measurements of the LMD process in the SWIR range using 316L as building material. For these experiments, the camera was mounted fixed to the welding arm of the LMD machine to keep the molten pool in focus, regardless of the shape of the specimen. As the thermograms do not contain any information about the current spatial position during the building process, we use an acceleration sensor to track the movement and synchronize the measured data with the predefined welding path. This allows us to reconstruct the geometry of the workpieces and assign the thermographic data to spatial positions. Furthermore, we investigate the influence of the acquisition wavelength on the thermographic data by comparing measurements acquired with different narrow bandpass filters (50 nm FWHM) in a spectral range from 1150 nm to 1550 nm. This research was funded by BAM within the Focus Area Materials. T2 - Sim-AM 2019 - 2. International Conference on Simulation for Additive Manufacturing CY - Pavia, Italy DA - 11.09.2019 KW - Additive manufacturing KW - 3D printing KW - Thermography KW - Direct energy deposition KW - Laser Metal Deposition KW - 3D Druck KW - Laser Pulver Auftragsschweißen KW - Additive Fertigung KW - Thermografie PY - 2019 AN - OPUS4-49070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René A1 - Fabry, Çağtay A1 - Rethmeier, Michael T1 - Life cycle assessment of fusion welding processes strategies and implementation N2 - In manufacturing, fusion welding processes use a lot of resources, which presents an opportunity to reduce environmental impact. While there is a general understanding of the environmental impact of these processes, it is difficult to quantitatively assess key parameters. This study introduces a welding-specific methodology that uses life cycle assessment (LCA) to evaluate the environmental impact of fusion welding technologies. Our approach analyses the main parameters that affect the environmental performance of different welding techniques, including traditional methods and additive manufacturing through the Direct Energy Deposition-Arc (DED-Arc) process. We integrate real-time resource usage data to offer an innovative framework for directly deriving environmental impacts. This research contributes to optimising welding processes by providing a precise and quantifiable measure of their ecological impact, facilitating the advancement of sustainable manufacturing practices. T2 - CEMIVET - Circular Economy in Metal Industries CY - Berlin, Germany DA - 06.06.2023 KW - Life Cycle Assessment KW - Fusion welding KW - Additive manufacturing KW - DED-Arc PY - 2023 AN - OPUS4-59499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Correlation of process, design and welding residual stresses in WAAM of high-strength steel components N2 - High-strength fine-grained structural steels have great potential for modern weight optimized steel construc-tions. Efficient manufacturing and further weight savings are achievable due to Wire Arc Additive Manu-facturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, the application is still severely limited due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation. Residual stresses may be critical regarding the special microstructure of high-strength steels in context with the risk of cold cracking and component performance in service. Therefore, process- and material-related influences, as well as the design effects on residual stress formation and cold cracking, are being investi-gated in a research project (IGF 21162 BG) focusing a high-strength WAAM welding consumable with yield strength of over 800 MPa. Objectives are the establish-ment of special WAAM cold cracking tests and pro-cessing recommendations allowing economical, suita-ble, and crack-safe WAAM of high-strength steels. First studies on process-related influences showed transfor-mation residual stresses arising during cooling, which significantly influence stress evolution of the compo-nent during layer-wise build-up. This has not yet been investigated for WAAM of high-strength steels. Focus of this study is on the systematic investigation of interactions of the WAAM welding process and design with cooling time, hardness, and residual stresses. Defined open hollow cuboids were welded and investi-gated under systematic variation (design of experi-ments, DoE) of the scale/dimensions (cf. Fig. 1a) and heat control (interlayer temperature Ti: 100–300 °C), heat input E: 200–650 kJ/m. The welding parameters were kept constant as possible to avoid any influence by the arc and the material transfer mode. The heat input adjusted primarily via the welding speed. The resulting different weald bead widths were considered by different build-up strategies (weld beads per layer) to ensure defined wall thicknesses. The hardness was determined on cross-sections taken from the manufac-tured hollow cuboids (Fig. 1c) and the analysis of the residual stress state was carried out by means of X-ray diffraction (XRD) at defined positions on the lateral wall (Fig. 1b). The hardness is higher at the top compared to the lower weld beads, as shown in Fig. 1c exemplarily for central test parameters of the DoE = 425 kJ/mm, Ti = 200 °C). This may be attributed to the specific heat control of the top weld beads, i.e., quenching effects, which are not tempered by weld beads above as is the case for lower weld beads implying a higher hardness. It was observed that the hardness level decreases with increasing energy per unit length, while the in-terpass temperature has a rather low influence on the hardness Residual stress analysis was performed on the lat-eral wall in the welding direction, cf. Fig. 1b, to deter-mine the influence of heat control and design. In the top area of the wall, maximum longitudinal residual stress-es of up to over 500 MPa exhibit, which corresponds to approx. 65% of the nominal yield strength of the mate-rial. The statistic evaluation of stress levels in welding direction of all test specimens show that adaption of heat input may reduce welding stresses up to 50%. In-terpass temperature has less pronounced effect on cool-ing times, microstructure, and on the residual level within parameter matrix. Overall, the results show a significant influence of heat input and component di-mensions on the residual stresses and minor effect of the interpass temperature. Hence, the properties of the specimens may be effectively adjusted via heat input. The working temperatures should be considered for global shrinkage behavior or restraints. Such investiga-tions of residual stress are necessary to further deter-mine local and global welding stresses regarding the consequences on the component safety during manu-facturing and service. T2 - 6th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 25.10.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - 76th IIW Annual Assembly and International Conference on Welding and Joining CY - Singapore DA - 16.07.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ozcan, Ozlem T1 - MAPz@BAM Material Acceleration Plattform Zentrum @ BAM N2 - Die Material Acceleration Platform der BAM (MAPz@BAM) bündelt unsere Automatisierungs-Expertise auf dem Gebiet der Materialwissenschaft und -prüfung. Wir entwickeln modulare Experimentmodule, automatische Prüf- und Auswerteverfahren und setzen künstliche Intelligenz für eine effiziente und autonome Versuchsplanung, - vorhersage und Datenanalyse ein. T2 - Kick off Meeting / EnerMAC ZIM Network CY - Berlin, Germany DA - 07.12.2023 KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - MAPz@BAM PY - 2023 AN - OPUS4-59411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jokisch, T. A1 - Gook, S. A1 - Marko, A. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam welding of additive manufactured components: Applicability of existing valuation regulations N2 - With additive manufacturing in the powder bed, the component size is limited by the installation space. Joint welding of additively manufactured parts offers a possibility to remove this size limitation. However, due to the specific stress and microstructure state in the additively built material, it is unclear to what extent existing evaluation rules of joint welding are also suitable for welds on additive components. This is investigated using laser beam welding of additively manufactured pipe joints. The welds are evaluated by means of visual inspection, metallographic examinations as well as computed tomography. The types of defects found are comparable to conventional components. This is an indicator that existing evaluation regulations also map the possible defects occurring for weld seams on additive components. KW - Weld imperfections KW - Additive manufacturing KW - Weldability KW - Laser welding PY - 2022 VL - 2 SP - 109 EP - 113 PB - DVS Media GmbH AN - OPUS4-56374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Heat control and design-related effects on the properties and welding stresses in WAAM components of high-strength structural steels N2 - Commercial high-strength filler metals for wire arc additive manufacturing (WAAM) are already available. However, widespread industrial use is currently limited due to a lack of quantitative knowledge and guidelines regarding welding stresses and component safety during manufacture and operation for WAAM structures. In a joint research project (FOSTA-P1380/IGF21162BG), the process- and material-related as well as design influences associated with residual stress formation and the risk of cold cracking are being investigated. For this purpose, reference specimens are welded fully automated with defined dimensions and systematic variation of heat control using a special, high-strength WAAM filler metal (yield strength >790 MPa). Heat control is varied by means of heat input (200–650 kJ/m) and interlayer temperature (100–300 °C). The ∆t8/5 cooling times correspond with the recommendations of steel producers (approx. 5–20 s). Welding parameters and AM geometry are correlated with the resulting microstructure, hardness and residual stress state. High heat input leads to a lower tensile stress in the component and may cause unfavorable microstructure and mechanical properties. However, a sufficiently low interlayer temperature is likely to be suitable for obtaining adequate properties at a reduced tensile stress level when welding with high heat input. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. These complex interactions are analyzed within this investigation. The aim is to provide easily applicable processing recommendations and standard specifications for an economical, appropriate and crack-safe WAAM of high-strength steels. T2 - Third edition of the International Congress on Welding, Additive Manufacturing and associated non destructive testing CY - Online meeting DA - 08.06.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2022 AN - OPUS4-56710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Design and implementation of a machine log for PBF-LB/M on basis of IoT communication architectures and an ETL pipeline N2 - AbstractPowder Bed Fusion with Laser Beam of Metals (PBF-LB/M) has gained more industrial relevance and already demonstrated applications at a small series scale. However, its widespread adoption in various use cases faces challenges due to the absence of interfaces to established Manufacturing Execution Systems (MES) that support customers in the predominantly data-driven quality assurance. Current state-of-the-art PBF-LB/M machines utilize communication architectures, such as OPC Unified Architecture (OPC UA), Message Queuing Telemetry Transport (MQTT) and Representational State Transfer Application Programming Interface (REST API). In the context of the Reference Architecture Model Industry 4.0 (RAMI 4.0) and the Internet of Things (IoT), the assets, particularly the physical PBF-LB/M machines, already have an integration layer implemented to communicate data such as process states or sensor values. Missing is an MES component acting as a communication and information layer. To address this gap, the proposed Extract Transform Load (ETL) pipeline aims to extract relevant data from the fabrication of each build cycle down to the level of scan vectors and additionally to register process signals. The suggested data schema for archiving each build cycle adheres to all terms defined by ISO/TC 261—Additive Manufacturing (AM). In relation to the measurement frequency, all data are reorganized into entities, such as the AM machine, build cycle, part, layer, and scan vector. These scan vectors are stored in a runtime-independent format, including all metadata, to be valid and traceable. The resulting machine log represents a comprehensive documentation of each build cycle, enabling data-driven quality assurance at process level. KW - FAIR data KW - Data-driven quality assurance KW - Laser powder bed fusion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601256 DO - https://doi.org/10.1007/s40964-024-00660-7 SN - 2363-9512 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-60125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane T1 - Improving additive manufacturing technologies by in-situ monitoring: Thermography N2 - Additive manufacturing of metals gains increasing relevance in the industrial field for part production. However, especially for safety relevant applications, a suitable quality assurance is needed. A time and cost efficient route to achieve this goal is in-situ monitoring of the build process. Here, the BAM project ProMoAM (Process monitoring in additive manufacturing) is briefly introduced and recent advances of BAM in the field of in-situ monitoring of the L-PBF and the LMD process using thermography are presented. T2 - Anwenderkonferenz Infratec GmbH CY - Online meeting DA - 04.11.2021 KW - Additive Manufacturing KW - Process monitoring KW - Thermography PY - 2021 AN - OPUS4-54026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühler, T. A1 - Wirth, Cynthia A1 - Ascheri, Mary A1 - Nicolaides, Dagmar A1 - Heinrich, J. A1 - Günster, Jens T1 - Slurry-based powder beds for the selective laser sintering of silicate ceramics N2 - Selective laser sintering of ceramic powders is a promising technique for the additive manufacturing of complex- and delicate-shaped ceramic parts. Most techniques have in common that the powder to be sintered is spread to a thin layer as a dry powder by means of a roller or shaker system. These layers have a relatively low density. On the other hand, appreciable densities can be reached with the use of ceramic slurries as the starting material. Therefore, the layer-wise slurry deposition (LSD) process has been developed. Layer stacks, i.e. powder beds, built up by employing the LSD technology exhibit a density comparable to ceramic powder compacts processed by means of conventional forming technologies. Writing the layer information with a focused laser beam in these dense ceramic powder compacts enables the manufacture of ceramic bodies with a high density and precision in contour. KW - Additive Fertigung KW - Keramik PY - 2015 DO - https://doi.org/10.4416/JCST2015-0007 SN - 2190-9385 VL - 6 IS - 2 SP - 113 EP - 118 PB - Göller CY - Baden-Baden AN - OPUS4-34962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Hygienic assessment of SLM-printed stainless steel N2 - Elektrochemische Messungen zur hygienischen Bewertung additiv gefertigter Bauteile werden diskutiert. Die Bewertung und Details des Werkstoffs werden beschrieben, Anwendungsbeispiele gezeigt. T2 - Kormat 2022 CY - Online meeting DA - 26.04.2022 KW - Korrosion KW - Trinkwasser KW - Hygienische Bewertung KW - Additive Fertigung PY - 2022 AN - OPUS4-54709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Düchting, J. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Heat treatment of SLM-LMD hybrid components N2 - Additive manufacturing is no longer just used for the production of prototypes but already found its way into the industrial production. However, the fabrication of massive metallic parts with high geometrical complexity is still too time-consuming to be economically viable. The combination of the powder bed-based selective laser melting process (SLM), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the process duration. For the industrial application of the SLM-LMD hybrid process chain it is necessary to investigate the interaction of the processes and its effect on the material properties to guarantee part quality and prevent component failure. Therefore, hybrid components are manufactured and examined before and after the heat treatment regarding the microstructure and the hardness in the SLM-LMD transition zone. The experiments are conducted using the nickel-based alloy Inconel 718. T2 - LiM 2019 CY - München, Germany DA - 23.06.2019 KW - Additive Manufacturing KW - Selective Laser Melting KW - Hybrid components KW - Inconel 718 KW - Laser Metal Deposition PY - 2019 SP - 1 EP - 9 AN - OPUS4-48410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorption and refraction tomography: characterization and non-destructive testing of micro-structured materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread holds equally for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. T2 - Treffen der `Confindustria´(Industrieverband) CY - Potenza, Italien DA - 29.03.2016 KW - Tomographie KW - Refraktion KW - Neutronenbeugung KW - Additive Fertigung PY - 2016 AN - OPUS4-35700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrand, G. A1 - Sänger, Johanna Christiane A1 - Schirmer, U. A1 - Mantei, W. A1 - Dupuis, Y. A1 - Houbertz, R. A1 - Liefeith, K. T1 - Process Development for Additive Manufacturing of Alumina Toughened Zirconia for 3D Structures by Means of Two-Photon Absorption Technique N2 - Additive manufacturing is well established for plastics and metals, and it gets more and more implemented in a variety of industrial processes. Beside these well-established material platforms, additive manufacturing processes are highly interesting for ceramics, especially regarding resource conservation and for the production of complex three-dimensional shapes and structures with specific feature sizes in the µm and mm range with high accuracy. The usage of ceramics in 3D printing is, however, just at the beginning of a technical implementation in a continuously and fast rising field of research and development. The flexible fabrication of highly complex and precise 3D structures by means of light-induced photopolymerization that are difficult to realize using traditional ceramic fabrication methods such as casting and machining is of high importance. Generally, slurry-based ceramic 3D printing technologies involve liquid or semi-liquid polymeric systems dispersed with ceramic particles as feedstock (inks or pastes), depending on the solid loading and viscosity of the system. This paper includes all types of photo-curable polymer-ceramic-mixtures (feedstock), while demonstrating our own work on 3D printed alumina toughened zirconia based ceramic slurries with light induced polymerization on the basis of two-photon absorption (TPA) for the first time. As a proven exemplary on cuboids with varying edge length and double pyramids in the µm-range we state that real 3D micro-stereolithographic fabrication of ceramic products will be generally possible in the near future by means of TPA. This technology enables the fabrication of 3D structures with high accuracy in comparison to ceramic technologies that apply single-photon excitation. In sum, our work is intended to contribute to the fundamental development of this technology for the representation of oxide-ceramic components (proof-of-principle) and helps to exploit the high potential of additive processes in the field of bio-ceramics in the medium to long-term future. KW - Additive manufacturing KW - Ceramics 3D printing KW - Two-photon adsorption KW - Polymer-ceramic mixtures KW - Bio-ceramic engineering PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526672 DO - https://doi.org/10.3390/ceramics4020017 VL - 4 IS - 2 SP - 224 EP - 239 PB - MDPI CY - Basel AN - OPUS4-52667 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Integration of the whole digital chain in a unique file for PBF-LB/M: practical implementation within a digital thread and its advantages N2 - The industrialization of AM is only possible by creating synergy with the tools of Industry 4.0. The system technology of Powder Bed Fusion with Laser beam of Metals (PBF-LB/M) reached a level of high performance in terms of process stability and material spectrum in the past years. However, the digital process chain, starting from CAD via CAM and plant-specific compila-tion of the manufacturing file exhibits media disruptions. The consequence is a loss of metadata. A uniform data scheme of simulation for Design for Additive Manufacturing (DfAM), the PBF-LB/M process itself and quality assurance is currently not realized within industry. There is no entity in the common data flows of the process chains, that enables the integration of these functionalities. As part of the creation of a digital quality infrastructure in the QI-Digital pro-ject, an integration of the CAD/CAM chain is being established. The outcome is a file in an advanced commercially available format which includes all simula-tions and manufacturing instructions. The information depth of this file extends to the level of the scan vectors and allows the automatic optimization and holis-tic documentation. In addition, the KPI for the economic analysis are generated by compressing information into a unique file combined with the application of a digital twin. The implementation and advantages of this solution are demon-strated in a case study on a multi-laser PBF-LB/M system. A build job contain-ing a challenging geometry is thermally simulated, optimized, and manufac-tured. To verify its suitability for an Additive Manufacturing Service Platform (AMSP), the identical production file is transferred to a PBF-LB/M system of another manufacturer. Finally, the achieved quality level of the build job is evaluated via 3D scanning. This evaluation is carried out in the identical entity of the production file to highlight the versatility of this format and to integrate quality assurance data. T2 - Additive Manufacturing for Products and Applications 2023 CY - Lucerne, Switzerland DA - 11.09.2023 KW - Laser Powder Bed Fusion KW - Digital Twin KW - Data Integrity KW - Process Chain Integration KW - Computer Aided Manufacturing PY - 2023 SN - 978-3-031-42982-8 DO - https://doi.org/10.1007/978-3-031-42983-5_7 SN - 2730-9576 VL - 3 SP - 91 EP - 114 PB - Springer CY - Cham AN - OPUS4-58363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Poka, Konstantin A1 - Nilsson, R. A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - On the challenges of hybrid repair of gas turbine blades using laser powder bed fusion N2 - Additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) are rapidly gaining popularity in repair applications. Gas turbine components benefit from the hybrid repair process as only damaged areas are removed using conventional machining and rebuilt using an AM process. However, hybrid repair is associated with several challenges such as component fixation and precise geometry detection. This article introduces a novel fixturing system, including a sealing concept to prevent powder sag during the repair process. Furthermore, a high-resolution camera within an industrial PBF-LB/M machine is installed and used for object detection and laser recognition. Herein, process related inaccuracies such as PBF-LB/M laser drift is considered by detection of reference objects. This development is demonstrated by the repair of a representative gas turbine blade. The final offset between AM build-up and component is analysed. An approximate accuracy of 160 μm is achieved with the current setup. T2 - LiM 2023 CY - Munich, Germany DA - 26.06.2023 KW - Laser powder bed fusion KW - Additive manufacturing KW - Hybrid repair KW - Position detection KW - High-resolution camera PY - 2023 SP - 1 EP - 9 AN - OPUS4-57836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Knobloch, Tim A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Concepts for bridging voids in metal additive manufacturing for repair of gas turbine blades using laser powder bed fusion N2 - One of the main advantages of additive manufacturing (AM) processes such as laser powder bed fusion (PBF-LB/M) is the possibility to manufacture complex near-net-shape components. Therefore, the PBF-LB/M process is becoming increasingly important for the manufacturing and repair of gas turbine blades. Despite the great freedom in design, there are also limitations to the process. Manufacturing overhangs or bridging voids are some of the main challenges. In the conventional PBF-LB/M process, overhangs with angles up to 45° can be manufactured. However, gas turbine blades feature voids for cooling, which have to be bridged when using PBF-LB/M. In this work, different concepts for bridging voids are developed for future application in gas turbine blade repair. For this purpose, a test geometry is derived from the tip area of a gas turbine blade as a reference. By changing the initial geometry of the reference body, different designs for bridging voids are developed based on the PBF-LB/M requirements. Subsequently, these distinct designs are manufactured by PBF-LB/M. The different approaches are compared with respect to their volume increase. In addition, the specimens are visually inspected for warpage, shrinkage and imperfections by overheating. Out of the seven concepts developed, three concepts can be recommended for gas turbine blade repair based on low volume increase, distortion and shrinkage. T2 - Metal Additive Manufacturing Conference - MAMC 2022 CY - Graz, Austria DA - 26.09.2022 KW - Repair of gas turbine blades KW - Laser Powder Bed Fusion (PBF-LB/M) KW - Selective Laser Melting (SLM) KW - Design for Additive Manufacturing (DfAM) KW - Bridging voids KW - Supportless PY - 2022 SP - 19 EP - 28 PB - TU Graz CY - Graz AN - OPUS4-55868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm ED - Stojanovic, I. T1 - Hygienic assessment of SLM-printed stainless steel N2 - Electrochemical measurements for the hygienic assessment of additively manufactured products are discussed. The Assessment and details of the material are described, examples for the application are given. N2 - Elektrochemische Messungen zur hygienischen Bewertung additiv gefertigter Bauteile werden diskutiert. Die Bewertung und Details des Werkstoffs werden beschrieben, Anwendungsbeispiele gezeigt. T2 - Kormat 2022 CY - Online meeting DA - 26.04.2022 KW - Korrosion KW - Trinkwasser KW - Hygienische Bewertung KW - Additive Fertigung PY - 2022 SN - 1848-4255 SP - 21 EP - 25 PB - Proceedings of the Croatian Society for Material Protection CY - Zagreb AN - OPUS4-54932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorption and Refraction Techniques: Characterization and Non-Destructive Testing of Additively Manufactured Materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will present a new technique in our portfolio, Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load. T2 - Kolloquium an dem ‘Laboratoire National de Metrologie et d’Essais CY - LNE’ Paris, France DA - 09.06.2016 KW - Computertomographie KW - Metrologie KW - 3D Mikrostruktur KW - Zerstörungsfreie Prüfung KW - Röntgenrefraktion KW - Additive Fertigung KW - TF Material KW - Analytical Science PY - 2016 AN - OPUS4-38826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Thermal history transfer from complex components to representative test specimens in laser powder bed fusion N2 - Additively manufactured components are characterized by heterogeneous mechanical properties due to variations of the microstructure, flaws and residual stresses resulting from the inhomogeneous fabrication process. The large number of influencing factors poses a further challenge in understanding the correlation between material properties, process parameters and component geometry. Therefore, the qualification of components based on witness specimens produced within the same job is questionable. This work aims to present a new strategy for the characterization of PBF-LB/M components based on representative specimens. The key assumption is the feasibility of a transfer of the thermal history from a component to a specimen. It is assumed that similar material properties are determined for components and specimens produced adopting a similar thermal history. After the definition of a region of interest in the component, a combination of thermal analyses by means of finite elements and in-situ experimental determination of the thermal history through infrared thermography is used to produce test coupons with a similar thermal history. The effectiveness of the procedure is demonstrated on a pressure vessel for applications in the chemical industry. KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Process simulation KW - Representative specimens PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602651 DO - https://doi.org/10.1007/s40964-024-00689-8 SN - 2363-9512 SN - 2363-9520 SP - 1 EP - 16 PB - Springer CY - Cham, Switzerland AN - OPUS4-60265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila Calderon, Luis Alexander A1 - Rehmer, Birgit A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit T1 - Low-cycle-fatigue behavior of stainless steel 316L manufactured by laser powder bed fusion N2 - This contribution presents the results of an experimental study on the LCF behavior of an austenitic 316L stainless steel produced by laser powder bed fusion featuring a low defect population, which allows for an improved understanding of the role of other typical aspects of a PBF‑LB microstructure. The LCF tests were performed between room temperature and 600 °C. A hot‑rolled 316L variant was tested as a reference. The mechanical response is characterized by strain-life curves, a Coffin‑Manson‑Basquin fitting, and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, optical and electron microscopy. The PBF‑LB/M/316L exhibits lower fatigue lives at lower strain amplitudes. The crack propagation is mainly transgranular. The solidification cellular structure seems to be the most relevant underlying microstructural feature determining the cyclic deformation behavior. T2 - TMS 2024 Annual Meeting & Exhibition CY - Orlando, Florida, US DA - 03.03.2024 KW - AGIL KW - Additive Fertigung KW - Mikrostruktur KW - LCF KW - 316L PY - 2024 AN - OPUS4-59782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schob, D. A1 - Roszak, R. A1 - Sagradov, I. A1 - Sparr, H. A1 - Ziegenhorn, M. A1 - Kupsch, Andreas A1 - Léonard, Fabien A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Experimental determination and numerical simulation of material and damage behaviour of 3D printed polyamide 12 under quasi-static loading N2 - In order to characterise the material and damage behaviour of additively manufactured polyamide 12 (PA12) under quasi-static load and to implement it in a numerical model, experiments under quasi-static load as well as microstructural investigations were carried out. Selective laser sintering (SLS) was used as the manufacturing process. For the classification of the material behaviour, quasi-static cyclic tests with holding times as well as tensile tests were performed. X-ray refraction and computed tomography (CT) were used to investigate the damage behaviour. The Chaboche model, which has already been applied for metallic materials under thermomechanical loading, served as the basis for the selection of the numerical material model. The same procedure was used for the selection of the damage model, where the Gurson–Tvergaard–Needleman (GTN) model was chosen, which was already used for porous metallic materials. The Chaboche model shows very good agreement with experimental results. Furthermore, the coupling with the GTN model allows a very good modelling of the damage behaviour. Finally, it could be shown that the selected models are suitable to simulate the material and damage behaviour of 3D printed PA12. KW - Polyamide 12 KW - 3D printing KW - Viscoplastic KW - Chaboche model KW - Damage KW - GTN model KW - X-ray refraction KW - Computed tomography PY - 2019 DO - https://doi.org/10.24423/aom.3162 SN - 0373-2029 VL - 71 IS - 4-5 SP - 507 EP - 526 PB - IPPT PAN - Polish Academy of Sciences, Institute of Fundamental Technological Research CY - Warsaw AN - OPUS4-49409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -