TY - CONF A1 - Agudo Jácome, Leonardo T1 - Revealing the Nature of Melt Pool Boundaries in Additively Manufactured Stainless Steel by Nano-sized Modulation N2 - Additive manufacturing (AM) of metallic alloys has gained momentum in the past decade for industrial applications. The microstructures of AM metallic alloys are complex and hierarchical from the macroscopic to the nanometer scale. When using laser-based powder bed fusion (L-PBF) process, two main microstructural features emerge at the nanoscale: the melt pool boundaries (MPB) and the solidification cellular substructure. Here, details of the MPB are revealed to clearly show the three-dimensional nature of MPBs with changes of cell growth of direction and their relation to their surrounding cellular substructure, as investigated by transmission electron microscopy (TEM) for L-PBF 316L austenitic stainless steel (cf. Figure 1). A hitherto unknown modulated substructure with a period of 21 nm is further discovered within cells as the result of a partial Ga+-focused ion beam-induced ferritic transformation of the austenite. Cell cores and cell boundaries differ notably regarding the modulated substructure. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive manufacturing KW - Austenitic steel 316L KW - Melt pool boundary KW - Microstructural characterization KW - Transmission electron microscopy PY - 2022 AN - OPUS4-54836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 DO - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Javaheri, E. A1 - Pittner, Andreas A1 - Graf, B. A1 - Rethmeier, Michael T1 - Instrumented indentation technique and its application for the determination of local material properties of welded steel structures N2 - The determination of mechanical properties of welded Steel structures such as strength or ductility is a subject of high interest for the majority of Companies in the area of metal Processing. The material Parameters can be obtained by performing the tensile test on the samples made from a part of a component. In some cases, it is highly expensive to produce the tensile specimens especially from the weld metal, which contains different type of microstructure such as weld seam or heat affected zone in an extremely small area. Therefore, a method is described in this paper to determine the material Parameters of high strength Steel structures and welded joints locally and without any additional effort to perform the tensile test. In this method, instrumented indentation technique (IIT), an indenter is pushed on the flat surface of a specimen in a certain period of time and simultaneously the applied force and the corresponding indentation path are measured. The data related to the force-indentation diagram is given as input to an artificial neural network (ANN) to obtain the material Parameters. The ANN can be trained by generating the large qualitative data sets with numerical Simulation of the IIT procedure. The Simulation must be run several times with the different material model parameter sets to generate the numerous force-indentation diagrams as the inputs of ANN. Then, the trained ANN is validated by performing the IIT on the welded joints and comparing the obtained material Parameters from ANN with the tensile test. Consequently, the mechanical properties of welded joints can be determined by performing the IIT and evaluating the resulting data by the ANN. T2 - 39. Assistentenseminar CY - Eupen, Germany DA - 12.09.2018 KW - Steel PY - 2019 SN - 978-396144-070-2 SP - 146 EP - 152 PB - DVS Media GmbH AN - OPUS4-51317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Quality assurance via a cyber physical system of a PBF-LB/M machine N2 - Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M) faces challenges in reproducibility and quality assurance, even for widely applied alloys like AlSi10Mg. This work introduces a digital provenance framework for PBF-LB/M, showcased through the EOS M 300–4 multi-laser machine. An Extract, Transform, Load (ETL) pipeline autonomously captures machine data, including scan vectors as well as process signals, and organizes them into a Digital Shadow (DS). The DS is further extended by external data sources, such as Melt Pool Monitoring (MPM), to enable comprehensive analysis and root cause identification. This approach ensures continuous data representation and facilitates the development of new quality metrics. Moreover, the framework enhances quality assurance and traceability, supports compliance with industry standards, and improves productivity. It also enables more precise cost calculations and predictive maintenance. By addressing these challenges, the framework is essential for advancing PBF-LB/M in industrial applications, achieving greater consistency and scalability in production. KW - PBF-LB/M KW - Data driven quality assurance KW - Data engineering KW - Digital shadow PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625187 DO - https://doi.org/10.1007/s40964-025-00978-w SN - 2363-9520 VL - 10 IS - 3 SP - 1771 EP - 1783 PB - Springer Science and Business Media LLC AN - OPUS4-62518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenberg, Rainer A1 - Charmi, Amir T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - Diese Arbeit beschreibt eine Methode für die Ermittlung einer Fließfunktion für additiv gefertigte Bauteile des Werkstoffs S316L. Ein Kristallplastizitätsmodell wird zunächst mit experimentellen Daten kalibriert. Anschließend werden mit diesem Modell sogenannte virtuelle Experimente durchgeführt, die die prozeßspezifische Mikrostruktur in Form von kristallographischen und morphologischen Texturen miteinbeziehen. Diese Simulationen werden mit einem representativen Volumenelement (RVE) durchgeführt, das aus EBSD/CT-Scans an additiv gefertigten Proben generiert wurde und daher die Kornstruktur und Kristallorientierungen enthält. Die virtuellen Experimente werden durchgeführt, um anhand der damit erhaltenen Fließpunkte eine anisotrope Barlat-Fließfunktion zu bestimmen. Dieser skalenübergreifende Ansatz ermöglicht die Simulation großer Strukturen, für die die Anwendung eines Kristallplastizitätsmodells numerisch zu teuer wäre. N2 - This work presents a method for the yield function determination of additively manufactured parts of S316L steel. A crystal plasticity model is calibrated with test results and used afterwards to perform so-called virtual experiments, that account for the specific process-related microstructure including crystallographic and morphological textures. These simulations are undertaken on a representative volume element (RVE), that is generated from EBSD/CT-Scans on in-house additively manufactured specimen, considering grain structure and crystal orientations. The results of the virtual experiments are used to determine an anisotropic Barlat yield function, that can be used in a macroscopical continuum-sense afterwards. This scale-bridging approach enables the calculation of large-scale parts, that would be numerically too expensive to be simulated by a crystal plasticity model. T2 - 3. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 07.11.2018 KW - Additive manufacturing KW - Scale-bridging KW - Crystal plasticity KW - Virtual experiments KW - Anisotropy PY - 2018 SN - 2509-8772 SP - 153 EP - 158 PB - DVM CY - Berlin AN - OPUS4-46570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Starting new adventures at BAM. The focus area projects PROMOAM and AGIL N2 - While additive manufacturing (AM) is blossoming in nearly every industrial field, and the most different process are being used to produce components and materials, little attention is paid on the safety concerns around AM materials and processes. Leveraging on our leading expertise in non-destructive testing (NDT) and materials characterization, we approach AM at BAM under two important viewpoints: first the on-line monitoring of the process and of the product, second the evolution of the (unstable) microstructure of AM materials under external loads. These two subjects are the core of the two new-born internal projects ProMoAM and AGIL, respectively. A detailed view of the goals and the organization of these two projects will be given, together with the expected output, and some preliminary results. T2 - Vortragsveranstaltung Bauhaus Universität, im Rahmen der Kolloquien der Fakultät Bauwesen. CY - Weimar, Germany DA - 01.06.2018 KW - Thermography KW - Additive Manufacturing KW - Non-destructive testing KW - On-line monitoring KW - Residual stress PY - 2018 AN - OPUS4-45118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Colombo, P. A1 - Wirth, Cynthia A1 - Günster, Jens T1 - Additive manufacturing of ceramics: Issues, potentialities, and opportunities N2 - Additive manufacturing (AM) is a technology which has the potential not only to change the way of conventional industrial manufacturing processes, adding material instead of subtracting, but also to create entirely new production and business strategies. Since about three decades, AM technologies have been used to fabricate prototypes or models mostly from polymeric or metallic materials. Recently, products have been introduced into the market that cannot be produced in another way than additively. Ceramic materials are, however, not easy to process by AM technologies, as their processing requirements (in terms of feedstock and/or sintering) are very challenging. On the other hand, it can be expected that AM technologies, once successful, will have an extraordinary impact on the industrial production of ceramic components and, moreover, will open for ceramics new uses and new markets. KW - Additive Fertigung KW - Keramik PY - 2015 DO - https://doi.org/10.1111/jace.13700 SN - 0002-7820 SN - 1551-2916 VL - 98 IS - 7 SP - 1983 EP - 2001 PB - Blackwell Publishing CY - Malden AN - OPUS4-34961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - SMART Standards und digitale Qualitätsinfrastruktur N2 - Die digitale Transformation der Qualitätsinfrastruktur (QI) bietet vielfältige Potentiale für mehr Effizienz, Transparenz und Vertrauen bei der Sicherung und dem Nachweis der Qualität von Produkten und Anwendungen. SMART Standards sind dabei ein wesentlicher Baustein im komplexen digitalen Ökosystem einer solchen modernen QI. Ihre wirksame Integration erfordert klare Anwendungsszenarien und Anforderungen. Der Vortrag bietet einen Überblick über eine moderne QI und ihr digitales Ökosystem. Insbesondere die Rolle von SMART Standards wird herausgearbeitet. Mithilfe von zwei Use Cases aus der BAM - Additive Fertigung und Zulassung von Transportbehältern für radioaktive Stoffe - werden User Stories vorgestellt. Dieser einführende Vortrag soll im Workshop des IDiS Plenums als Grundlage für die Entwicklung weiterer User Stories und Ableitung von Anforderungen an SMART Standards dienen. T2 - 14. IDiS Plenum CY - Berlin, Germany DA - 07.10.2025 KW - Qualitätsinfrastruktur KW - SMART Standards KW - Digitalisierung KW - QI-Digital PY - 2025 AN - OPUS4-64528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 AN - OPUS4-55429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - ISO TC 261 / JG 85 Projects N2 - Dieser Vortrag fasst die laufenden Aktivitäten der ISO TC 261 JG 85 zusammen. Insbesondere die Gewinnung und Verarbeitung von PBF-LB/M Prozessdaten steht im Fokus. T2 - ISO TC 261 / ASTM F.42 Meeting CY - Manila, Philippines DA - 22.09.2025 KW - Additive Fertigung KW - PBF-LB/M KW - Digitalisierung PY - 2025 AN - OPUS4-64399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, Daniela T1 - Comparative Analysis FFF vs. cold rolled 316L Samples N2 - This study provides insights into the properties of 316L stainless steel produced by additive manufacturing using fused filament fabrication (FFF). One key finding is particularly noteworthy: in significant contrast to cold-rolled 316L, FFF316L develops a pronounced martensite phase after fabrication. The comprehensive comparative analysis shows that FFF316L not only retains the ferrite volume content, but that this is also significantly influenced by the build-up direction. Despite the sintering process, which typically involves densification of the material, a pore volume fraction of 8.45 % remains, which influences the mechanical properties. Although FFF316L has lower elastic modulus and tensile strength values compared to cold-rolled 316L, its ductility is still competitive. The study further reveals that deformation-induced martensite forms at the intersections of the deformation twins and ferrite islands form at the grain boundaries during the compression and sintering phases. These findings highlight the challenges associated with FFF316L in specific application fields and signal the need to continue to carefully evaluate and improve the development of manufacturing technologies. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive manufacturing KW - Fused Filament Fabrication KW - Computed Tomography KW - 316L Stainless Steel KW - Deformation-Induced Martensite PY - 2024 AN - OPUS4-60302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin T1 - Position Detection for Hybrid Repair of gas turbine blades using PBF-LB/M N2 - This poster presents a workflow for camera-based position detection of components within PBF-LB/M machines. This enables a hybrid repair process of highly stressed components such as gas turbine blades using PBF-LB/M. T2 - Kuratoriumsführung CY - Berlin, Germany DA - 21.06.2022 KW - Additive Manufacturing KW - PBF-LB/M KW - Position detection KW - Camera KW - Image processing PY - 2022 AN - OPUS4-56587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Laser beam melting additive manufacturing at μ-gravity N2 - At the Workshop "Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing" at the Institute of Materials Physics in Space, German Aerospace Center (DLR) in Cologne, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications in microgravity. T2 - Workshop 'Neutron and Synchrotron Monitoring in Aerospace Advanced Manufacturing' CY - Cologne, Germany DA - 11.08.2022 KW - Additive manufacturing KW - In-space manufacturing KW - Microgravity KW - μ-gravity KW - Laser beam melting KW - Advanced manufacturing KW - Aerospace KW - Process monitoring PY - 2022 AN - OPUS4-56521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Metrology for Additively Manufactured Medical Implants: The MetAMMI project N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - X-ray computed tomography PY - 2018 AN - OPUS4-45926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena T1 - Powder based Additive Manufacturing in Space N2 - Abstract of the event: 'The area of New Space is a vastly growing and dynamic field with a high innovative potential and many exciting ideas. After decades where activities in space were dominated and funded mainly by governmental agencies, a new industry is forming and new business models are being developed around ideas like satellite-based internet, space travel, space mining, geo-monitoring etc. For space applications, lightweight design is crucial to keep the costs at a minimum. This Innovation Day will introduce the field of New Space and present the variety of exciting opportunities that arise for composites based on their excellent lightweight potential.' Another research area is now arising in the field of 3D printing or additive manufacturing of fiber composite materials in space. At the event, we presented on the opportunities and our experiences of using a powder based additive manufacturing process for in-space manufacturing applications. T2 - CU Innovation Day - New opportunities and applications in space with composites CY - Online meeting DA - 29.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Microgravity KW - Powder PY - 2022 AN - OPUS4-54559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy T1 - Computational investigation of DGG kinetics by phase-field method N2 - Non-equilibrium microstructure evolution in additive manufacturing (AM) is a major barrier for establishing a safe and sustainable application of AM in industrial processes. The constant heat source in the AM continuously affects the just-solidified grains beneath the melting pool, leading to directional grain growth (DGG). While real-time measurements of the non-equilibrium microstructure evolution is challenging, here developing a computational framework to systematically explore DGG becomes imperative. We have advanced a comprehensive approach, integrating mean-field modeling and phase-field simulations, to elucidate the dynamics of DGG under an external driving force. Our simulations unveil a steady-state power-law grain growth kinetics during DGG, characterized by the interplay between curvature-driven dynamics at grain boundary junctions and directional driving forces. T2 - Tagung DGM Additive Fertigung CY - Bremen, Germany DA - 12.06.2024 KW - Directional grain growth KW - Phase-field simulation KW - Additive manufacturing PY - 2024 AN - OPUS4-60750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Paul, Andrea A1 - Kranzmann, Axel A1 - Hilgenberg, Kai A1 - Pittner, Andreas A1 - Bruno, Giovanni A1 - Sommer, Konstantin A1 - Gumenyuk, Andrey T1 - Quality control in additive manufacturing via in-situ monitoring and non-destructive testing N2 - More than 80 representatives of SMEs, industrial companies and research institutes met on September 12 at the workshop "Challenges in Additive Manufacturing: Innovative Materials and Quality Control" at BAM in Adlershof to discuss the latest developments in materials and quality control in additive manufacturing. In special lectures, researchers, users and equipment manufacturers reported on the latest and future developments in additive manufacturing. Furthermore, funding opportunities for projects between SMEs and research institutions on a national and European level were presented. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - Quality control KW - Non-destructive testing KW - In-situ monitoring PY - 2018 AN - OPUS4-46072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik T1 - AM activities at BAM with focus on process monitoring N2 - The presentation gives an overview of current projects in additive manufacturing at BAM. In particular, the results of the ProMoAm project were presented. T2 - VAMAS - Materials Issues in Additive Manufacturing CY - Berlin, Germany DA - 25.06.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Thermography KW - Data Fusion KW - In-situ monitoring PY - 2018 AN - OPUS4-45620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization for emerging technologies - Additive manufacturing case study N2 - This was a short presentation on the role of Standards and standardization for the development and diffusion of an emerging technology - using additive manufacturing as an example. T2 - 6th Annual Meeting of the Indo-German Working Group on Quality Infrastructure CY - Berlin, Germany DA - 17.01.2019 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2019 AN - OPUS4-47397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique Authenticator for additively manufactured parts N2 - Components produced using additive manufacturing can be marked for unique identification and secure authentication [1,2]. Serial numbers and machine-readable codes can be used to identify the component, and link digital product-related data (i.e., a digital product passport) to the actual components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. However, local manipulation of components may alter the properties, and external tagging features can be altered or even removed by post-processing treatments. This work therefore aims to provide a new methodology for identification, authentication, and traceability of additively manufactured (AM) components using microstructural features that are unique to each part. X-ray computed tomography (XCT) was employed to image the microstructural features of AlSi10Mg parts. Based on size and geometry, the most prominent features were selected to create a unique digital authenticator. We implemented a framework in Python using open-access modules that can successfully create a digital object authenticator using the segmented microstructure information from XCT. The authenticator is stored as a QR code, along with the 3D information of the selected features. T2 - DGM Additive Berlin 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive Fertigung KW - Authentifizierung KW - Mikrostruktur PY - 2024 AN - OPUS4-60957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on an instrumental design and operational parameters, which require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In the presence of surface defects, the temperature field is distorted in a specific manner that depends on shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for monitoring the process: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows for a cautious inference that optical spectroscopy can detect surface defects and, possibly, predict their characters, e.g., inner or protruding. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijon, Spain DA - 30 May 2022 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2022 AN - OPUS4-55063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Lena T1 - Laser beam melting additive manufacturing at μ-gravity N2 - In-space manufacturing (ISM) provides the opportunity to manufacture and repair critical components on future human spaceflight missions. For explorations to Mars and beyond, ISM is a key strategy not only due to the long travel distances and high costs of supply from earth but also to be able to safely work in space for years. Human spaceflight is still dependent on shipments from earth that can fail for several reasons. ISM is a valuable alternative to ensure the timely and safe resupply of space missions. With additive manufacturing (AM) technologies, components are built directly from a 3D computer-aided-design (CAD) model which offers the advantages of freedom of design and the production of complex and ready-to-use parts. A virtual tool box with 3D models in space or the supply of information instead of components from earth to space can strongly benefit future missions. For industrial use, most research has focused on laser based additive manufacturing processes such as laser beam melting (LBM) where metallic powder particles are spread into a uniform powder bed and melted by a laser to the desired shape. In the absence of gravity, the handling of metal powders, which is essential for the process, is challenging. We present an evolution of an AM system, where a gas flow throughout the powder bed is applied to stabilize the powder bed. This is needed to compensate for the missing gravitational forces in microgravity experiments on parabolic flight campaigns. The system consists of a porous building platform acting as a filter for the fixation of metal particles in a gas flow. It is driven by reduced pressure established by a vacuum pump underneath the platform. The system creates a drag force that directs the particles towards the porous building platform, similar to the effect of the gravitational force. The AM system with its gas-flow-assisted powder deposition has been tested in several parabolic flight campaigns, and stainless-steel powder has successfully been processed during microgravity conditions. Different powder recoating mechanisms have been investigated to assess the homogeneous distribution of the powder as well as the attachment of the next layer to the powder bed. These mechanisms included different container designs with parallel double blades and with a V-shape at the bottom, and a roller recoating system. The samples presented are the first metal parts ever manufactured using LBM in μ-gravity. In addition to manufacturing in a μ-gravity environment, the experiments have shown the feasibility to manufacture components at different accelerations during the parabolic flight: hyper gravity (1.8 g), μ-gravity (< 0.01 g) and 1 g. Recent results will also be presented describing the application of this LBM setup in a parabolic flight campaign with mixed lunar, martian and µ-gravity acceleration, during which the processing of a lunar regolith simulant powder was tested. For ISM, the development and testing of the proposed AM system demonstrates that LBM can be considered a viable technology for the manufacturing of metal and ceramic parts in a μ-gravity or reduced-gravity environment. T2 - International Conference on Advanced Manufacturing CY - Online meeting DA - 07.03.2022 KW - μ-gravity KW - In-space manufacturing KW - Additive manufacturing KW - Laser beam melting KW - Microgravity KW - Stainless steel KW - Lunar regolith simulant PY - 2022 AN - OPUS4-54450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - BAM Characterization on Capabilities in Additive Manufacturing N2 - Quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing, with particular focus on additively manufactured materials. I will also show how X-ray refraction computed tomography (CT) and Neutron diffraction can be highly complementary to classic absorption CT, being sensitive to internal interfaces and residual stress analysis, respectively. T2 - Treffen des Konsortium AeroMatForAM CY - Köln, Germany DA - 16.03.2017 KW - Neutronenbeugung KW - Eigenspannungen KW - Additive Fertigung KW - Computertomographie KW - Röntgenrefraktion KW - X-ray Refraction KW - Additive Manufacturing KW - Computed Tomography KW - Residual Stress analysis KW - Neutron Diffraction PY - 2017 AN - OPUS4-39657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin T1 - Microstructure analysis in AM 316L N2 - Additive manufacturing (AM) offers diverse advantages compared to conventional manufacturing. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), was analyzed and compared to microstructure of 316L hot rolled material. Methods used for analysis are microprobe, optical microscopy and electron backscatter diffraction. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - selective laser melting KW - microstructure analysis PY - 2019 AN - OPUS4-49880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Altenburg, Simon A1 - Ehlers, Henrik A1 - Hilgenberg, Kai A1 - Mohr, Gunther T1 - Monitoring additive manufacturing processes by using NDT methods N2 - In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - ABENDI - Workshop CY - Online meeting DA - 19.11.2020 KW - Additive Fertigung PY - 2020 AN - OPUS4-52042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Portella, Pedro Dolabella T1 - Monitoring additive manufacturing N2 - Additive manufacturing (AM) processes allow a high level of freedom in designing and producing components for complex structures. They offer the possibility of a significant reduction of the process chain. However, the large number of process parameters influence the structure and the behavior of AM parts. A thorough understanding of the interdependent mechanisms is necessary for the reliable design and production of safe AM parts. In this presentation we discuss the online monitoring of metallic AM parts produced by the Laser Powder Bed Fusion (LPBF) process by using optical, thermographic and electromagnetic methods. In a first approach we present the detection of defects generated during the process and discuss how to improve these methods for the optimization of design and production of metallic AM parts. T2 - Conaendi&IEV 2021 CY - Online meeting DA - 10.03.2021 KW - Additive Fertigung PY - 2021 AN - OPUS4-52241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures N2 - Selective laser melting process optimisation: X-ray and neutron sources for information from powder grains to printed structures T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - SLS KW - X-ray computed tomography KW - Refraction KW - Neutron diffraction KW - Additive manufacturing KW - Industry 4.0 PY - 2018 AN - OPUS4-45924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolsch, Nico T1 - Enabling online quality control of powder deposition for 3d printing in microgravity N2 - 3D printing or additive manufacturing in space is of great value for long-term human spaceflight missions and space stations, conveniently offering access to a ‘virtual warehouse’ of tools and spare parts on the push of a button. The process only needs one type of feedstock such as powder or filament and only as much material as the final part requires, giving it a huge weight benefit over traditional subtractive methods. While 3D printers are already operational on the ISS since 2014, the utilized processes are only capable of manufacturing relatively low strength parts from polymers not suitable for many tools or critical components. To gain access to high quality metal prints, a modified Laser Powder Bed Fusion (LPBF) process was developed to stabilize the critical powder bed in microgravity through a gas flow [2]. This setup was able to generate a (miniature) steel wrench during parabolic flights, but a reliable layer deposition has raised challenges due to the combination of gas flow parameters with microgravity conditions. Furthermore, the quality and density of the powder bed, which is critical for the process, cannot be examined afterward on the ground. This is due to hyper gravity phases during the flight that are influencing the properties of the powder bed. In this paper, the challenges of the layer deposition are revised, and the subsequent evolution of the recoating system explained. Later, the challenges of an in-situ quality control, evaluation, and quantification of the properties of the powder bed are examined. As a solution, a high-resolution line-scanner is proposed and its implementation int the compact LPBF system demonstrated. Its ability to measure common defects such as ridges in the deposited layer is shown in experiments at normal gravity. As an illustration, Figure 1 shows an extreme case of the formation of ridges. T2 - European Conference on Spacecraft Structures Materials and Environmental Testing CY - Toulouse, France DA - 28.03.2023 KW - Additive manufacturing KW - In-space manufacturing KW - Online quality control KW - Microgravity KW - Powder deposition PY - 2023 AN - OPUS4-57249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - In-situ defect detection for laser powder bed fusion with active laser thermography N2 - Defects are still common in metal components built with Additive Manufacturing (AM). Process monitoring methods for laser powder bed fusion (PBF-LB/M) are used in industry, but relationships between monitoring data and defect formation are not fully understood yet. Additionally, defects and deformations may develop with a time delay to the laser energy input. Thus, currently, the component quality is only determinable after the finished process. Here, active laser thermography, a non-destructive testing method, is adapted to PBF-LB/M, using the defocused process laser as heat source. The testing can be performed layer by layer throughout the manufacturing process. The results of the defect detection using infrared cameras are presented for a custom research PBF-LB/M machine. Our work enables a shift from post-process testing of components towards in-situ testing during the AM process. The actual component quality is evaluated in the process chamber and defects can be detected between layers. T2 - 2023 Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - Additive Manufacturing KW - Additive Fertigung KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-58137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Continuous layer deposition for the Additive Manufacturing of ceramics by Layerwise Slurry Deposition N2 - Powder bed technologies are among the most successful additive manufacturing (AM) techniques. The application of these techniques to most ceramics has been difficult due to the challenges associated with the deposition of homogeneous powder layers when using fine powders. In this context, layerwise slurry deposition (LSD) has been developed as a deposition method that enables the use of powder bed AM technologies for advanced ceramic materials. In layerwise slurry deposition, a ceramic slurry is deposited in layers using a doctor blade and dried to produce a highly compacted powder. Not only can very fine submicron powders with low organic content be processed, but the dense powder bed also provides excellent support for the manufactured parts. The latest development of this technology shows that it is possible to print ceramic parts in a continuous process by depositing a layer on a rotating platform on which a powder bed grows in a spiral motion. The unique mechanical stability of the layers in LSD printing makes it possible to build up a powder bed several centimeters thick without lateral support. Continuous layer deposition achieves more than 10 times the productivity of linear deposition, approaching a build volume of 1 liter per hour. T2 - International Conference on Additive Manufacturing Technology Frontiers CY - Xi’an, China DA - 11.04.2025 KW - Ceramic KW - advanced ceramics PY - 2025 AN - OPUS4-63963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - Fundamentals of quantitative temperature determination during laser powder bed fusion of metals (PBF-LB/M) via hyperspectral thermography N2 - Additive manufacturing (AM, also known as 3D printing) of metals is becoming increasingly important in industrial applications. Reasons for this include the ability to realize complex component designs and the use of novel materials. This distinguishes AM from conventional manufacturing methods such as subtractive manufacturing (turning, milling, etc.). The most widely used AM process for metals is laser powder bed fusion (PBF-LB/M, also known as selective laser melting SLM). Currently, it has the highest degree of industrialization and the largest number of machines in use. In PBF-LB/M, the feedstock is present as metal powder in an inert gas atmosphere inside a process chamber where a laser melts it locally. By repeatedly lowering the build platform, applying a new layer of powder, and then selectively melting it with the laser, a component is built up layer by layer. The local temperature distributions that occur during this process determine not only the properties of the finished component, but also the possible formation of defects such as pores and cracks. Due to the high relevance of the thermal history for precise geometries and defect formation, a temporally and spatially resolved measurement of quantitative (or real/actual) temperatures would be optimal. Quantitative values would ensure comparability and repeatability of the AM process which would also positively affect the quality and safety of the manufactured component. Furthermore, it would also contribute to the validation of simulations and to a deeper understanding of the manufacturing process itself. At present, however, only qualitative monitoring of the thermal radiation is performed (e.g., by monitoring the melt pool using a photodiode), and safety-relevant components must be inspected ex situ afterwards which is time-consuming and costly. A reason for the lack of quantitative temperature data from the process are the challenging conditions of the PBF-LB/M process with high scanning speeds and a small laser spot diameter. Furthermore, the emissivity of the surface changes at high dynamics (temporally/spatially) as well as with temperature and wavelength. This specifically makes contactless temperature determination based on emitted infrared radiation challenging for PBF-LB/M. Although classical thermography offers very good qualitative insights, it is not sufficient for a reliable quantitative temperature determination without a complex temperature calibration including image segmentation and assignment of previously determined emissivities. For this reason, this publication presents the hyperspectral thermography approach for the PBF-LB/M process: The emitted infrared radiation is measured simultaneously at many adjacent wavelengths. In this study, this is realized via a fast hyperspectral line camera that operates in the short-wave infrared range. The thermal radiation of a line on the target is spectrally dispersed and detected to measure the radiant exitance along that line. If the melt pool of the PBF-LB/M process moves through this line at a sufficient frame rate, a spatial reconstruction of an effective melt pool is possible. One approach to determine the desired emissivities and the quantitative temperature from this hyperspectral data are temperature-emissivity separation (TES) methods. A major problem is that n spectral measurements are available, but n+1 parameters are required for each image pixel (n emissivity values + one temperature value). TES methods offer the possibility to approximate this mathematically underconstrained problem in a reliable and traceable way by analytically parameterizing the spectral emissivity with a few degrees of freedom. Using this approach, setup and method are applied to a research machine for PBF-LB/M, called SAMMIE (Sensor-based Additive Manufacturing Machine). First results under AM process conditions are shown which form the basis for the determination of quantitative temperatures in the PBFLB/M process. This marks an important contribution to improving the comparability and repeatability of production, validating simulations, and understanding the process itself. When fully developed and validated, the presented method can also provide reference measurements to evaluate and optimize other, more practical monitoring methods, such as melt pool monitoring or optical tomography. In the long run, this will help to increase confidence in the safety of AM products. T2 - QIRT 2024 CY - Zagreb, Croatia DA - 01.07.2024 KW - Additive Manufacturing KW - Additive Fertigung KW - Real Temperature KW - Melt Pool KW - Emissivity PY - 2024 AN - OPUS4-60762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schob, D. T1 - Material and damage behaviour of 3D printed PA12 under cyclic loading N2 - The material and damage behaviour of additively manufactured polyamide 12 (PA12) under dynamic loading was characterized by cyclic tests and microstructure analysis. The results were used to develop a numerical material and damage model. In a recent study, it was shown that the material and damage behaviour of 3D printed PA12 under quasistatic loading is simulated in a realistic way by coupling the material model by Chaboche and the damage model by Gurson-Tvergaard-Needleman (GTN). Using microscopy, X-ray refraction, and computed tomography, a porosity of about 5% was evaluated. These results served as a starting point for the present work. For the dynamic load, both the previously used Chaboche model and the GTN model were extended. Furthermore, the temperature was measured during the experiment and the self-heating effect was observed. Therefore, a temperaturedependent material parameters for the simulation were introduced. Considering the results of mechanical experiments, microstructural investigations, and self-heating effects, a good agreement between Experiment and numerical simulation could be achieved. T2 - VI International Conference on Computational Modeling of Fracture and Failure of Materials and Structures CY - Brunswick, Germany DA - 12.06.2019 KW - Polyamide 12 KW - Selective Laser Sintering (SLS) KW - Viscoplasticity KW - Chaboche model KW - GTN model KW - X-ray refraction KW - Computed tomography PY - 2019 AN - OPUS4-48335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Towards hyperspectral in-situ temperature measurement in metal additive manufacturing N2 - The industrial use of additive manufacturing for the production of metallic parts with high geometrical complexity and lot sizes close to one is rapidly increasing as a result of mass individualisation and applied safety relevant constructions. However, due to the high complexity of the production process, it is not yet fully understood and controlled, especially for changing (lot size one) part geometries. Due to the thermal nature of the Laser-powder bed fusion (L-PBF) process – where parts are built up layer-wise by melting metal powder via laser - the properties of the produced part are strongly governed by its thermal history. Thus, a promising route for process monitoring is the use of thermography. However, the reconstruction of temperature information from thermographic data relies on the knowledge of the surface emissivity at each position on the part. Since the emissivity is strongly changing during the process due to phase changes, great temperature gradients, possible oxidation, and other potential influencing factors, the extraction of real temperature data from thermographic images is challenging. While the temperature development in and around the melt pool, where melting and solidification occur is most important for the development of the part properties. Also, the emissivity changes are most severe in this area, rendering the temperature deduction most challenging. A possible route to overcome the entanglement of temperature and emissivity in the thermal radiation is the use of hyperspectral imaging in combination with temperature emissivity separation (TES) algorithms. As a first step towards the combined temperature and emissivity determination in the L-PBF process, here, we use a hyperspectral line camera system operating in the short-wave infrared region (0.9 µm to 1.7 µm) to measure the spectral radiance emitted. In this setup, the melt pool of the L-PBF process migrates through the camera’s 1D field of view, so that the radiation intensities are recorded simultaneously for multiple different wavelength ranges in a spatially resolved manner. At sufficiently high acquisition frame rate, an effective melt pool image can be reconstructed. Using the grey body approximation (emissivity is independent of the wavelength), a first, simple TES is performed, and the resulting emissivity and temperature values are compared to literature values. Subsequent work will include reference measurements of the spectral emissivity in different states allowing its analytical parametrisation as well as the adaption and optimisation of the TES algorithms. An illustration of the proposed method is shown in Fig.1. The investigated method will allow to gain a deeper understanding of the L-PBF process, e.g., by quantitative validation of simulation results. Additionally, the results will provide a data basis for the development of less complex and cheaper sensor technologies for L-PBF in-process monitoring (or for related process), e.g., by using machine learning. T2 - 21st International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Additive manufacturing KW - L-PBF KW - Hyperspectral PY - 2022 AN - OPUS4-55152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. T1 - Influence of build-up height on residual stresses in additive repair and modification of multi-material composites using DED-Arc N2 - The application of steels with a higher yield strength allows reductions in wall thickness, component weight and production costs. Hybrid additive manufacturing based on Gas Metal Arc Welding (GMAW) processes (DED-Arc) can be used to realise highly effi-cient component modifications and repairs on semi-finished products and additively manufactured structures. There are still a number of key issues preventing widespread implementation, particularly for SMEs. In addition to the manufacturing design, detailed information about assembly strategy and geometric adaptation of the component for modifications or repairs are missing. These include the welding-related stresses associ-ated with the microstructural influences caused by the additive manufacturing steps, particularly in the transition area of the substrate and filler material interface. The present research focuses the effect of component height on residual stress distribution. Defined specimens were welded fully automatically with a high-strength solid wire (yield strength > 790 MPa) especially adapted for DED-Arc on S690QL substrate. T2 - IIW intermediate meeting for commission IX CY - Trollhätten, Sweden DA - 12.03.2025 KW - DED-Arc KW - Residual stress KW - Component height PY - 2025 AN - OPUS4-65046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poka, Konstantin A1 - Ali, Sozol A1 - Ulbricht, Alexander A1 - Schröder, Jakob A1 - Khambayat, Jiganesh A1 - Scholz, Maik A1 - Saeed, Waleed A1 - Merz, Benjamin A1 - Epperlein, Martin A1 - Hilgenberg, Kai T1 - Reduction of extraneous variance in powder bed fusion with laser beam of metals by means of advanced digital preprocessing N2 - Data-driven quality assurance and reproducibility are critical for advancing the industrial maturity of Powder Bed Fusion with Laser Beam of Metals (PBF-LB/M). This study addresses the extraneous variance in scan vectors that arises even for identical cross sections of nominally identical components but located at different positions on the build platform. This inherent variance, common across most PBF-LB/M machines, is caused by scan vector computation relative to the machine coordinate origin and subsequent projection of the resulting pattern onto individual component cross sections. In this work, scan vectors are computed still following conventional slicing, but relative to the workpiece origin of each component, using an EOS M 300-4. This digital preprocessing approach homogenizes fabrication conditions, ensuring that anomalies, such as scan vector overlaps, occur consistently across identical components. The impact during fabrication is assessed through powder bed imaging, melt pool monitoring, and operational data from the multilaser PBF-LB/M machine. Components are manufactured from AlSi10Mg for each scan vector computation origin and subsequently qualified using x-ray computed tomography, optical coordinate measurement, and optical surface measurement. A comprehensive evaluation is conducted, comparing the results in terms of component density, geometric accuracy, and surface roughness to those obtained using conventional preprocessing. Based on these findings, practical recommendations are provided, focusing on achieved quality criteria to identify potential drawbacks, while also considering the life cycle analysis of fabrication. Finally, the study emphasizes the significance of consistent scan vector provisioning for identical components placed at different build platform positions, assuming no roll or pitch during nesting. T2 - ICALEO CY - Orlando, FL, USA DA - 13.10.2025 KW - Quality assurance KW - Data management KW - 3D printing KW - Laser fabrication KW - Life cycle analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642104 DO - https://doi.org/10.2351/7.0001890 SN - 1042-346X VL - 37 IS - 4 SP - 1 EP - 14 PB - American Institute of Physics Publishing CY - New York AN - OPUS4-64210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - In-situ defect detection in Laser Powder Bed Fusion (L-PBF) by using thermography and optical tomography N2 - Laser powder bed fusion (L-PBF) is one of the most promising additive manufacturing (AM) technologies for the production of complex metallic real part components. Due to the multitude of factors influencing process conditions and part quality and due to the layer-wise characteristic of the process, monitoring of process signatures seems to be mandatory in case of the production of safety critical components. Here, the iterative process nature enables unique access for in-situ monitoring during part manufacture. In this talk, the successful test of the synchronous use of a high-frequency infrared camera and a camera for long time exposure, working in the visible spectrum (VIS) and equipped with a near infrared filter (NIR), will be introduced as a machine manufacturer independent thermal detection monitoring set-up. Thereby, the synchronous use of an infrared camera and a VIS NIR camera combines the advantages of high framerate and high spatial resolution. The manufacture of a 316L stainless steel specimen, containing purposely seeded defects and volumes with forced changes of energy inputs, was monitored during the build. The measured thermal responses are analysed and compared with a defect mapping obtained by micro X-ray computed tomography (CT). The first results regarding methods for data analysis, derived correlations between measured signals and detected defects as well as sources of possible data misinterpretation are presented in this talk. T2 - 45. MPA Seminar - Fit for Future – Advanced Manufacturing Technologies, Materials and Lifetime CY - Stuttgart, Germany DA - 01.10.2019 KW - Data fusion KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Lack-of-fusion PY - 2019 AN - OPUS4-49386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia ED - Jakobs, K. ED - Blind, K. T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - 22nd EURAS Annual Standardisation Conference: Digitalisation: Challenge and Opportunity for Standardisation CY - Berlin, Germany DA - 28.06.2017 KW - Additive manufacturing KW - 3D Printing KW - Innovation KW - Emerging technologies KW - Standards PY - 2017 SN - 978-3-95886-172-5 VL - 2017 SP - T117 EP - T135 PB - Wissenschaftsverlag Mainz CY - Aachen ET - 1. AN - OPUS4-41020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in situ mittels Thermographiekamera überwacht, sodass Informationen über das Abkühlverhalten der Bauteile während des Prozesses gewonnen werden konnten. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Infrared thermography KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring PY - 2021 AN - OPUS4-52699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - In situ thermography and optical tomography in LBM - comparison to CT N2 - - Successful proof of concept of synchronous in-situ monitoring of a L-PBF process by thermography and optical tomography - Examination method for data analysis - Identification of correlations between measured signals and defects - Identification of sources of misinterpreting T2 - Workshop on Additive Manufacturing: Process , materials , simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Laser Powder Bed Fusion KW - Thermography KW - Optical Tomography KW - Computed Tomography KW - Additive Manufacturing KW - 3D printing PY - 2019 AN - OPUS4-48521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hensel, J. T1 - Influence of build-up height and heat input on distortion and residual stresses in additive repair and modification of multi-material composites using DED-Arc N2 - In hybrid additive manufacturing, components or semi-finished products manufactured by conventional primary forming are enhanced or modified by additive manufactured structures. The integration of additive manufacturing steps into existing production routes opens up significant economic and technical potential. However, systematic investigations focusing on the critical transition area between the specific properties of the substrate (like high-strength) and the additively manufactured component, made of specific filler material, are still lacking. Residual stresses heighten the risk of cold cracking, excessive distortion and a reduction in yield stress. This is particularly evident in sensitive transition areas, resulting from a complex interaction among the material used, process conditions, and component design. This risk can be minimized by an optimized layer structure in combination with suitable process parameters. The focus of the present study was to determine the influence of deposition strategy on t T2 - International Materials Science and Engineering Congress - MSE 2024 CY - Darmstadt, Germany DA - 02.04.2024 KW - DED-Arc KW - Residual stress KW - Heat control PY - 2024 AN - OPUS4-61929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Ensuring Quality Smarter with a digital Quality Infrastructure (Mexican-German Technical Exchange) N2 - The presentation introduces the initiative QI‑Digital, which aims to holistically transform quality infrastructure across all its elements. To this end, a digital QI ecosystem is being developed that integrates digital QI tools with advanced methods for testing, inspection, and monitoring, and embeds them into the broader digital industrial ecosystem. Sovereign and secure data sharing and management are enabled through technologies such as data spaces, the Asset Administration Shell, verifiable credentials, and the Digital Product Passport (DPP). Particular emphasis is placed on the role of artificial intelligence in quality assurance: Several use cases and ongoing projects from BAM are presented togetehr with the business benefits they enable. Ongoing activities on the use of AI for manageing quality-related documentation are also presentated that aim at establishing an agentic AI framework for QI. The talk concludes with key lessons learned so far within the initiative. T2 - Mexican-German Technical Exchange on QI Digital CY - Mexico City, Mexico DA - 23.01.2026 KW - Quality infrastructure KW - Agentic AI KW - Digital Ecosystem PY - 2025 AN - OPUS4-65411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias T1 - Computed tomography of SLM produced IN625 parts: From powder grains to lattice structures N2 - Im Fokus dieser Arbeit steht die computertomographische (CT) Untersuchung (Synchrotron- und Labor-CT) von IN625-Pulver und den daraus gefertigten Streben, welche wiederum zu Gitterstrukturen zusammengesetzt werden. Aufgrund der Filigranität wurde zur Fertigung dieser Proben das pulverbettbasierte selektive Laserschmelzen verwendet. Porositätsanalysen und Größenverteilungen wurden für das Pulver bei einer rekonstruierten Voxelgröße von 0,5µm ermittelt. 6,0mm lange Streben variierten im Aufbauwinkel von 30° bis 90° zur Bauplattform und zeigten so den Unterschied zwischen Up- und Down-Skin hinsichtlich der Rauigkeit und Porenverteilung. Die Gitterstrukturen konnten in-situ mit bis zu 5,0kN belastet werden, um deren Verformung computertomographisch zu erfassen. T2 - 7. VDI-TUM Expertenforum CY - Garching b. München, Germany DA - 13.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures PY - 2018 AN - OPUS4-46069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912) is an alloy with 36% nickel and 64% iron and is generally classified as a difficult-to-cut material. Increasingly complex structures and the optimization of resource efficiency are making additive manufacturing (AM) more and more attractive for the manufacture or repair of components. Subsequent machining of AM components is unavoidable for its final contour. By using modern, hybrid machining processes, e.g., ultrasonic-assisted milling (US), it is possible to improve the cutting situation regarding the resulting surface integrity as well as the cutting force. Part I deals with the influence of the alloying elements Ti, Zr, and Hf on the microstructure and the hardness of the initial alloy 36. Part II focusses on the effect of the alloy modifications and the ultrasonic assistance on machinability as well as on the surface integrity after finish-milling. The results show a highly significant influence of the ultrasonic assistance. The cutting force during the US is reduced by over 50% and the roughness of approx. 50% compared to conventional milling (CM) for all materials investigated. Moreover, the US causes a defect-free surface and induces near-surface compressive residual stresses. CM leads to a near-surface stress state of approx. 0 MPa. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy 36 KW - Ultrasonic-assisted milling KW - Surface integrity KW - Modification of structural morphology PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566609 DO - https://doi.org/10.1007/s40194-022-01438-7 SP - 1 EP - 8 PB - Springer CY - Heidelberg AN - OPUS4-56660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Residual Stress Evolution During Slot Milling for Repair Welding and WAAM of High-Strength Steel Components N2 - High-strength steels have great potential for weight optimization due to reduced wall thicknesses in many modern steel constructions. Further advances in efficiency can be achieved through the application of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM). These technologies enable the sustainable and resource-efficient manufacturing of high-strength steels into near-net-shape, efficient structures. During the production of steel structures, unacceptable defects may occur in the weld area or in the WAAM component, e.g., due to unstable process conditions. The economical solution for most of the cases is local gouging or machining of the affected areas and repair welding. With respect to the limited ductility of high-strength steels, it is necessary to clarify the effects of machining steps on the multiaxial stress state and the high design-induced shrinkage restraint. In this context, the component-related investigations in two research projects are concerned with the residual stress evolution during welding and slot milling of welds and WAAM structures made of high-strength steels with yield strengths ≥790 MPa. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyse the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and relaxation of the specimens with the initial residual stresses induced by welding. T2 - ICRS 11 - The 11th International Conference on Residual Stresse CY - Nancy, France DA - 27.03.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Reparaturschweißen KW - Gefügedegradation KW - Windenergie PY - 2022 AN - OPUS4-56708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. T1 - Influence of build up height on residual stresses in additive repair and modification using DED Arc N2 - Directed Energy Deposition (DED)-Arc is suitable for the hybrid additive manufacturing, modification and repair of large metal components with high deposition rates. Residual stresses and distortion are of central importance when characterizing the manufactured components and the sensitive transition area between AM component and semi-finished product. Residual stresses caused by the thermal cycles during the manufacturing process can impair the mechanical properties of the manufactured parts and can lead component failure. Therefore, understanding and controlling residual stresses, especially when combining different base and filler materials, is critical to improving the quality and efficiency of the hybrid DED-Arc process. This article deals with the influence of the build-up height on the residual stress distribution of additively manufactured components with a selected base and filler material combination. Using a robot-assisted DEDsystem and a controlled short arc, systematic step cancellation tests were carried out at a selected working temperature (200 C°) and heat input (600 kJ/m). In a 5-stage termination experiment, straight walls were produced using a one bead per layer strategy and selected increasing component heights between 15 mm and 300 mm. The influence of the build height on the longitudinal residual stress in the process direction was analyzed and discussed. All experiments showed a comparable stress distribution in the area of the substrate plate up to the heat-affected zone (HAZ) and the transition zone, regardless of the buliding height. However, the height showed a significant influence on the of residual stress distribution of the deposited AM-component. High positive stress gradients with a maximum range between 300 MPa to 400 MPa were always found in the last approx. 18 component layers (upper 40 mm), which can be explained by the shrinkage of the nonheat- treated top layer. Underlying layers, where present, showed a homogeneous residual stress distribution characterized by low compressive stresses. This can be explained by the process related tempering during the deposition of the upper layers. A constant boundary layer number was determined for all specimens. Once this number was exceeded, the distribution of residual stresses no longer changed, but merely shifted with the increasing height of the component in the direction of build-up. These correlations contribute to the understanding of residual stress development with increasing structure height. This study is part of a running research project on the properties of hybrid additive components and processes. It aims the stress optimized hybrid additive manufacturing of high-strength components and the necessary recommendations for application. T2 - 78th IIW Annual Assembly and International Conference on Welding and Joining CY - Genoa, Italy DA - 22.06.2025 KW - DED-Arc KW - Additive manufacturing KW - Residual stress PY - 2025 AN - OPUS4-65192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - MAPz@BAM Material Acceleration Plattform Zentrum @ BAM N2 - Die Material Acceleration Platform der BAM (MAPz@BAM) bündelt unsere Automatisierungs-Expertise auf dem Gebiet der Materialwissenschaft und -prüfung. Wir entwickeln modulare Experimentmodule, automatische Prüf- und Auswerteverfahren und setzen künstliche Intelligenz für eine effiziente und autonome Versuchsplanung, - vorhersage und Datenanalyse ein. T2 - TechConnect Adlershof: Grand Solutions CY - Berlin, Germany DA - 06.11.2023 KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - MAPz@BAM PY - 2023 AN - OPUS4-59412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -