TY - CONF A1 - Bertin, Annabelle A1 - Schönhals, Andreas A1 - ten Brummelhuis, N. A1 - Ahmadi, Vahid A1 - Asadujjaman, Asad T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from acrylamide-based monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the right side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Bioorganik 2017 – 26th Symposium "Bioorganic Chemistry" for young researchers CY - Berlin, Germany DA - 20.09.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - 2,6-diaminopyridine KW - Acrylamide PY - 2017 AN - OPUS4-42007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad A1 - Ahmadi, Vahid A1 - Schönhals, Andreas A1 - ten Brummelhuis, N. T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - UCT&IOCB Theoretical Chemistry Seminars CY - University of Chemistry and Technology, Department of Physical Chemistry, Prague, Czech Republic DA - 24.11.2017 KW - Thermoresponsive polymers KW - UCST polymers KW - 2,6-diaminopyridine PY - 2017 AN - OPUS4-43129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -