TY - JOUR A1 - Lay, Vera A1 - Buske, S. A1 - Townend, J. A1 - Kellett, R. A1 - Savage, M. A1 - Schmitt, D. R. A1 - Constantinou, A. A1 - Eccles, J. D. A1 - Gorman, A. A1 - Bertram, M. A1 - Hall, K. A1 - Lawton, D. A1 - Kofman, R. T1 - 3D Active Source Seismic Imaging of the Alpine Fault Zone and the Whataroa Glacial Valley in New Zealand JF - Journal of Geophysical Research: Solid Earth N2 - The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)-2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP-2B borehole. At shallower depths (z < 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments and a major fault (z < 0.5 km) are identified 0.5–1 km south of the DFDP-2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa. KW - Imaging KW - Signal processing KW - Seismic KW - Borehole KW - DAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539163 DO - https://doi.org/10.1029/2021JB023013 VL - 126 IS - 12 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-53916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Elsayed, H. A1 - Bernardo, E. A1 - Wirth, Cynthia A1 - Lopez-Heredia, M.A. A1 - Knabe, C. A1 - Colombo, P. A1 - Günster, Jens T1 - 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder JF - Biofabrication N2 - Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells. KW - KNN KW - Glass microspheres PY - 2015 DO - https://doi.org/10.1088/1758-5090/7/2/025008 SN - 1758-5082 VL - 7 IS - 2 SP - 025008 PB - IOP Publ. CY - Philadelphia AN - OPUS4-34957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Grote, K.-H. ED - Hefazi, H. T1 - 6. Corrosion and Corrosion Resistance T2 - Springer Handbook of Mechanical Engineering N2 - The chapter starts with a brief introduction about corrosion, which is defined as the interdependency between a metal, a corrosive environment, and the respective component design. The second section introduces the most important forms of aqueous electrochemical corrosion (uniform corrosion, galvanic corrosion, selective and intergranular corrosion, and finally pitting and crevice corrosion in the case of passive layer forming metals). In addition, electrochemical corrosion under applied mechanical load is introduced (stress corrosion cracking, hydrogen-assisted cracking, corrosion fatigue), as well as special forms of corrosion (erosion, fretting, and microbiologically induced corrosion). The third section of this chapter introduces (mostly dry) chemical corrosion and high-temperature corrosion (oxidation, carburization, high-temperature hydrogen attack, sulfurization, nitriding, halogenation). As in the case of electrochemical corrosion, chemical corrosion can also be superimposed by mechanical loads. Finally, general facts on the testing of corrosion are introduced. KW - Corrosion KW - Corrosion testing KW - Handbook KW - Electrochemical corrosion KW - Chemical corrosion PY - 2021 SN - 978-3-030-47035-7 DO - https://doi.org/10.1007/978-3-030-47035-7_6 VL - 2021 SP - 185 EP - 213 PB - Springer Nature Switzerland AG CY - Cham (CH) ET - 2nd Edition AN - OPUS4-52423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nordholt, Niclas A1 - O'Hara, Kate A1 - Resch-Genger, Ute A1 - Blaskovich, M. A1 - Rühle, Bastian A1 - Schreiber, Frank T1 - A fluorescently labelled quaternary ammonium compound (NBD-DDA) to study resistance mechanisms in bacteria JF - Frontiers in microbiology N2 - Quaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely N-dodecyl-N,N-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA). NBD-DDA is readily detected by flow cytometry and fluorescence microscopy with standard GFP/FITC-settings, making it suitable for molecular and single-cell studies. As a proof-of-concept, NBD-DDA was then used to investigate resistance mechanisms which can be heterogeneous among individual bacterial cells. Our results reveal that the antimicrobial activity of NBD-DDA against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa is comparable to that of benzalkonium chloride (BAC), a widely used QAC, and benzyl-dimethyl-dodecylammonium chloride (BAC12), a mono-constituent BAC with alkyl-chain length of 12 and high structural similarity to NBD-DDA. Characteristic time-kill kinetics and increased tolerance of a BAC tolerant E. coli strain against NBD-DDA suggest that the mode of action of NBD-DDA is similar to that of BAC. As revealed by confocal laser scanning microscopy (CLSM), NBD-DDA is preferentially localized to the cell envelope of E. coli, which is a primary target of BAC and other QACs. Leveraging these findings and NBD-DDA‘s fluorescent properties, we show that reduced cellular accumulation is responsible for the evolved BAC tolerance in the BAC tolerant E. coli strain and that NBD-DDA is subject to efflux mediated by TolC. Overall, NBD-DDA’s antimicrobial activity, its fluorescent properties, and its ease of detection render it a powerful tool to study resistance mechanisms of QACs in bacteria and highlight its potential to gain detailed insights into its mode-of-action. KW - Antimicrobial resistance KW - Bacteria KW - Disinfection KW - Biocides PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563811 DO - https://doi.org/10.3389/fmicb.2022.1023326 SN - 1664-302X IS - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy T1 - A Fourier transformation-based temporal integration scheme for viscoplastic solids subjected to fatigue deterioration JF - International Journal of Fatigue N2 - Using continuum damage mechanics (CDM) for lifetime prediction requires numerical integration of evolving damage until the onset of failure. The primary challenge for the simulation of structural fatigue failure is caused by the enormous computational costs due to cycle-by-cycle temporal integration throughout the whole loading history, which is in the order of 103–107 cycles. As a consequence, most approaches circumvent this problem and use empirical methods such as Wöhler curves. They are well suited for approximating the lifetime, but they are not capable to capture a realistic degradation of the material including redistribution of stresses. The main objective of the paper is to provide a technique for finite element (FE) simulations of structures under fatigue loading while reducing computational costs. A Fourier transformation-based temporal integration (FTTI) scheme is proposed, which adapts the conventional FE method for modeling the viscoplastic deterioration in a structure subjected to cyclic loading. The response fields are represented by a Fourier series which assumes a temporal scale separation: a microchronological (short time) scale arises from the oscillatory loading and a macrochronological (long time) scale is due to the slow material relaxation resulting from yielding and damage evolution. The original dynamic boundary value problem (BVP) is approximated by the stationary BVP on the microchronological scale. Alternation of the displacement field on the macrochronological scale is correlated with evolution of the history variables by means of a high order adaptive cycle jump method. Performance and significant acceleration of the FE simulations is demonstrated at different loading scenarios for a constitutive damage model where the progressive damage accumulation is driven by viscoplastic yielding. KW - Fatigue KW - Accelerated time integration KW - Continuum damage mechanics KW - Fourier series PY - 2017 DO - https://doi.org/10.1016/j.ijfatigue.2017.03.015 SN - 0142-1123 SN - 1879-3452 VL - 100 IS - 1 SP - 215 EP - 228 PB - Elsevier Ltd. AN - OPUS4-39616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Techritz, Sandra A1 - Jakubowski, Norbert A1 - Roos, P.H. T1 - A multi-parametric microarray for protein profiling: simultaneous analysis of 8 different cytochromes via differentially element tagged antibodies and laser ablation ICP-MS JF - Analyst N2 - The paper presents a new multi-parametric protein microarray embracing the multi-analyte capabilities of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The combination of high throughput reverse phase protein microarrays with element tagged antibodies and LA-ICP-MS makes it possible to detect and quantify many proteins or biomarkers in multiple samples simultaneously. A proof of concept experiment is performed for the analysis of cytochromes particularly of cytochrome P450 enzymes, which play an important role in the metabolism of xenobiotics such as toxicants and drugs. With the aid of the LA-ICP-MS based multi-parametric reverse phase protein microarray it was possible to analyse 8 cytochromes in 14 different proteomes in one run. The methodology shows excellent detection limits in the lower amol range and a very good linearity of R² ≥ 0.9996 which is a prerequisite for the development of further quantification strategies. KW - Multi-parametric KW - Multiplexing KW - Microarray KW - Immunoassay KW - LA-ICP-MS KW - Cytochrome P450 PY - 2013 DO - https://doi.org/10.1039/c3an00468f SN - 0003-2654 SN - 1364-5528 VL - 138 IS - 21 SP - 6309 EP - 6315 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-29275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hampel, Marco A1 - Dimper, Matthias A1 - Schenderlein, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - A new approach for high-resolution analysis of early-stage corrosion processes N2 - The poster presentation summarizes the recent developments on the combination of scanning electrochemical microscopy with multielectrode arrays for the investigation of local corrosion processes. T2 - GfKORR Jahrestagung 2017 CY - Frankfurt am Main, Germany DA - 07.11.2017 KW - Scanning electrochemical microscope (SECM) KW - Multielectrode array sensors KW - Corrosion PY - 2017 AN - OPUS4-43459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ordavo, I. A1 - Ihle, S. A1 - Arkadiev, V. A1 - Scharf, Oliver A1 - Soltau, H. A1 - Bjeoumikhov, A. A1 - Bjeoumikhova, S. A1 - Buzanich, Günter A1 - Gubzhokov, R. A1 - Günther, A. A1 - Hartmann, R. A1 - Holl, P. A1 - Kimmel, N. A1 - Kühbacher, M. A1 - Lang, M. A1 - Langhoff, N. A1 - Liebel, A. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Schaller, G. A1 - Schopper, F. A1 - Strüder, L. A1 - Thamm, C. A1 - Wedell, R. T1 - A new pnCCD-based color X-ray camera for fast spatial and energy-resolved measurements JF - Nuclear instruments and methods in physics research A N2 - We present a new high resolution X-ray imager based on a pnCCD detector and a polycapillary optics. The properties of the pnCCD like high quantum efficiency, high energy resolution and radiation hardness are maintained, while color corrected polycapillary lenses are used to direct the fluorescence photons from every spot on a sample to a corresponding pixel on the detector. The camera is sensitive to photons from 3 to 40 keV with still 30% quantum efficiency at 20 keV. The pnCCD is operated in split frame mode allowing a high frame rate of 400 Hz with an energy resolution of 152 eV for Mn Kα (5.9 keV) at 450 kcps. In single-photon counting mode (SPC), the time, energy and position of every fluorescence photon is recorded for every frame. A dedicated software enables the visualization of the elements distribution in real time without the need of post-processing the data. A description of the key components including detector, X-ray optics and camera is given. First experiments show the capability of the camera to perform fast full-field X-Ray Fluorescence (FF-XRF) for element analysis. The imaging performance with a magnifying optics (3×) has also been successfully tested. KW - X-ray CCD camera KW - pnCCD KW - Fast X-ray imaging KW - XRF KW - Full-field X-ray fluorescence KW - Elemental analysis KW - High quantum efficiency KW - High energy resolution KW - Polycapillary optics PY - 2011 DO - https://doi.org/10.1016/j.nima.2011.05.080 SN - 0168-9002 SN - 0167-5087 VL - 654 SP - 250 EP - 257 PB - North-Holland CY - Amsterdam AN - OPUS4-24370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna A1 - Kunte, Hans-Jörg A1 - Toepel, Jörg T1 - A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae JF - Biofouling N2 - A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms. KW - Microbial contamination KW - Real-time quantitative PCR KW - Microbiologically influenced corrosion; KW - Diesel biodeterioration KW - Fouling KW - Indicator PY - 2016 DO - https://doi.org/10.1080/08927014.2016.1177515 SN - 0892-7014 VL - 32 IS - 6 SP - 635 EP - 644 PB - Taylor & Francis Group CY - Abingdon AN - OPUS4-37337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschiche, Harald A1 - Hoffmann, Katrin A1 - Radunz, Sebastian A1 - Schwibbert, Karin A1 - Sameith, Janin A1 - Toepel, Jörg A1 - Resch-Genger, Ute T1 - A Polymeric Nanosensor for Sensing of Broad pH Changes in Biofilm as Tool for the Investigation of Microbial Induced Corrosion N2 - One of today’s major problems in many technical plants as well as fuel tanks is Microbial induced corrosion (MIC), leading to considerable damage and huge financial losses. Successful prevention of MIC requires the localization of first signs of corrosion as well as the identification of factors influencing the corrosion process. Hence, there is a growing need for sensitive and preferably inexpensive tools that enable the early detection of MIC. Of utmost importance are methods, which provide spatially and time-resolved information and allow the determination of corrosion rates at sites of interest for possible prevention of MIC. T2 - First European / 10th German BioSensor Symposium CY - Potsdam, Germany DA - 20.03.2017 KW - Nanoparticel based pH-probes KW - Microbial induced corrosion KW - Imaging PY - 2017 AN - OPUS4-40261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -