TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl N2 - Der Vortrag gibt einen Überblick über den Einfluss trennender Fertigungsschritte auf die Eigenspannungen in Bauteilen aus hochfestem Stahl. T2 - Bachelor-, Master-, Doktoranden-Kolloquium OvGU Magdeburg CY - Magdeburg, Germany DA - 17.01.2024 KW - Hochfester Stahl KW - Additive Fertigung KW - Reparaturschweißen KW - Eigenspannungen PY - 2024 AN - OPUS4-59413 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual Stress Evolution During Slot Milling for Repair Welding and WAAM of High-Strength Steel Components N2 - High-strength steels have great potential for weight optimization due to reduced wall thicknesses in many modern steel constructions. Further advances in efficiency can be achieved through the application of additive manufacturing processes, such as Wire Arc Additive Manufacturing (WAAM). These technologies enable the sustainable and resource-efficient manufacturing of high-strength steels into near-net-shape, efficient structures. During the production of steel structures, unacceptable defects may occur in the weld area or in the WAAM component, e.g., due to unstable process conditions. The economical solution for most of the cases is local gouging or machining of the affected areas and repair welding. With respect to the limited ductility of high-strength steels, it is necessary to clarify the effects of machining steps on the multiaxial stress state and the high design-induced shrinkage restraint. In this context, the component-related investigations in two research projects are concerned with the residual stress evolution during welding and slot milling of welds and WAAM structures made of high-strength steels with yield strengths ≥790 MPa. In-situ digital image correlation (DIC) and ex-situ X-ray diffraction (XRD) were used to analyse the stresses and strains induced on specimens during and after milling. The systematic analyses revealed a significant interaction of the stiffness and relaxation of the specimens with the initial residual stresses induced by welding. T2 - ICRS 11 - The 11th International Conference on Residual Stresse CY - Nancy, France DA - 27.03.2022 KW - MAG-Schweißen KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Reparaturschweißen KW - Gefügedegradation KW - Windenergie PY - 2022 AN - OPUS4-56708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Herstellung und Charakterisierung von WAAM-Bauteilen aus hochfesten Zusatzwerkstoffe N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. Im vorliegenden Beitrag werden einige Verarbeitungsempfehlung auf Basis der Ergebnisse für den Arbeitskreis des DVS AG V 12 (Additive Fertigung) abgeleitet. T2 - Sitzung der DVS Arbeitsgruppe (AG) V 12 Additive Fertigung CY - Online meeting DA - 23.11.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss von Wärmeführung und Bauteildesign auf die Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - WAAM KW - Eigenspannungen KW - Additive Fertigung KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Windenergie KW - Wärmeführung PY - 2022 AN - OPUS4-56718 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Correlation of process, design and welding residual stresses in WAAM of high-strength steel components N2 - High-strength fine-grained structural steels have great potential for modern weight optimized steel construc-tions. Efficient manufacturing and further weight savings are achievable due to Wire Arc Additive Manu-facturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, the application is still severely limited due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation. Residual stresses may be critical regarding the special microstructure of high-strength steels in context with the risk of cold cracking and component performance in service. Therefore, process- and material-related influences, as well as the design effects on residual stress formation and cold cracking, are being investi-gated in a research project (IGF 21162 BG) focusing a high-strength WAAM welding consumable with yield strength of over 800 MPa. Objectives are the establish-ment of special WAAM cold cracking tests and pro-cessing recommendations allowing economical, suita-ble, and crack-safe WAAM of high-strength steels. First studies on process-related influences showed transfor-mation residual stresses arising during cooling, which significantly influence stress evolution of the compo-nent during layer-wise build-up. This has not yet been investigated for WAAM of high-strength steels. Focus of this study is on the systematic investigation of interactions of the WAAM welding process and design with cooling time, hardness, and residual stresses. Defined open hollow cuboids were welded and investi-gated under systematic variation (design of experi-ments, DoE) of the scale/dimensions (cf. Fig. 1a) and heat control (interlayer temperature Ti: 100–300 °C), heat input E: 200–650 kJ/m. The welding parameters were kept constant as possible to avoid any influence by the arc and the material transfer mode. The heat input adjusted primarily via the welding speed. The resulting different weald bead widths were considered by different build-up strategies (weld beads per layer) to ensure defined wall thicknesses. The hardness was determined on cross-sections taken from the manufac-tured hollow cuboids (Fig. 1c) and the analysis of the residual stress state was carried out by means of X-ray diffraction (XRD) at defined positions on the lateral wall (Fig. 1b). The hardness is higher at the top compared to the lower weld beads, as shown in Fig. 1c exemplarily for central test parameters of the DoE = 425 kJ/mm, Ti = 200 °C). This may be attributed to the specific heat control of the top weld beads, i.e., quenching effects, which are not tempered by weld beads above as is the case for lower weld beads implying a higher hardness. It was observed that the hardness level decreases with increasing energy per unit length, while the in-terpass temperature has a rather low influence on the hardness Residual stress analysis was performed on the lat-eral wall in the welding direction, cf. Fig. 1b, to deter-mine the influence of heat control and design. In the top area of the wall, maximum longitudinal residual stress-es of up to over 500 MPa exhibit, which corresponds to approx. 65% of the nominal yield strength of the mate-rial. The statistic evaluation of stress levels in welding direction of all test specimens show that adaption of heat input may reduce welding stresses up to 50%. In-terpass temperature has less pronounced effect on cool-ing times, microstructure, and on the residual level within parameter matrix. Overall, the results show a significant influence of heat input and component di-mensions on the residual stresses and minor effect of the interpass temperature. Hence, the properties of the specimens may be effectively adjusted via heat input. The working temperatures should be considered for global shrinkage behavior or restraints. Such investiga-tions of residual stress are necessary to further deter-mine local and global welding stresses regarding the consequences on the component safety during manu-facturing and service. T2 - 6th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 25.10.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen N2 - Der Vortrag gibt einen Überblick über den Einfluss der Prozessparameter auf die Eigenspannungen sowie die Härte in additiv gefertigten Bauteilen aus hochfestem stahl. Des Weiteren wird dargestellt, wie sich das Bauteildesign und trennende Fertigungsschritte auf die Eigenspannungen der Bauteile auswirken. T2 - DVS Arbeitsgruppe (AG) V 12 CY - Online meeting DA - 15.11.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Fachvortrag: Innovative Probenherstellungim Lichte der Proben-Bauteil-Beziehungen N2 - Der Vortrag erörtert die aktuellen fachlichen Herausforderungen und Ziele in der Zentralwerkstatt/FB9.2 der BAM für den Helmholtz-AK "Bau wissenschaftlicher Geräte" T2 - Helmholtz-Arbeitskreis "Bau wissenschaftlicher Geräte", 18. Jahrestagung CY - Berlin, Germany DA - 10.05.2023 KW - Probenfertigung KW - Erneuerbare Energien KW - Additive Fertigung KW - Wasserstoff-Sicherheit PY - 2023 AN - OPUS4-59263 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss der Wärmeführung auf den Beanspruchungszustand in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Magdeburg, Germany DA - 23.06.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56726 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss der Prozessführung auf den Eigenspannungszustand beim WAAM-Schweißen hochfester Stahlbauteile N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. Im Rahmen der Normungssitzung werden praktikable Verarbeitungsempfehlungen basierend auf den Erkenntnissen des Vh. mit Vertretern aus Industrie und Forschung diskutiert. T2 - NA 092-00-05 GA: Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Online meeting DA - 10.03.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Einfluss von Wärmeführung und Bauteildesign auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle T2 - DVS-Berichte - DVS CONGRESS 2022 N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. T2 - DVS Congress 2022 CY - Koblenz, Germany DA - 19.09.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 SN - 978-3-96144-189-1 VL - 382 SP - 737 EP - 745 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-56719 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -