Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-54768 Beitrag zu einem Tagungsband Auersch, Lutz Wellenausbreitung und Pfähle im inhomogenen Boden - Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homogenen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Bodenreaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. Düsseldorf VDI-Verlag 2022 VDI Berichte 2379 978-1-18-092379-6 7. VDI-Fachtagung Baudynamik Würzburg, Germany 27.04.2022 28.04.2022 697 706 2022-05-16 OPUS4-54769 Vortrag Auersch, Lutz Wellenausbreitung und Pfähle im inhomogenen Boden - Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homoge-nen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Boden-reaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. 2022 7. VDI-Fachtagung Baudynamik Würzburg, Germany 27.4.2022 28.4.2022 2022-05-09 OPUS4-56601 Vortrag Auersch, Lutz Die Einfügedämmung bei Schienenfahrwegen Definition, Messung und Berechnung Die Definition und Beschreibung der Einfügedämmung im Normentwurf DIN 45673-4 ist noch nicht richtig. Es wird die Beschreibung aus DIN 45673-3 herangezogen, die für Messungen gilt. Für die drei Rechenverfahren gibt es jeweils eine passende Beschreibung. Mit diesen Vorlagen ist eine vernünftige Definition der Einfügungsdämmung zu finden. Es bedarf einer Abgrenzung gegenüber anderen (falschen) Möglichkeiten. Des Weiteren ist der Anhang 2 erweitert und der Parametersatz im Anhang 1 auf das Wesentliche reduziert worden. 2022 Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen Online meeting 14.12.2022 14.12.2022 2022-12-20 OPUS4-54243 Vortrag Auersch, Lutz Die Berechnung der Einfügedämmung bei Schienenfahrwegen - die Impedanzmethode mit einem Freiheitsgrad Mit dieser Methode kann man die Einfügedämmung eines Schienenstützpunkts/einer Schwelle korrekt berechnen. Sie gilt in ihrer ursprünglichen Form für eine Unterschottermatte in einem Tunnel 2022 Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen Online meeting 20.1.2022 20.1.2022 2022-01-25 OPUS4-54916 Vortrag Auersch, Lutz Elastische Elemente in der Emission, Transmission und Immission von Bahnerschütterungen Dieser Vortrag präsentiert einige Prinzipien und einige Beispiele zur Minderung von Eisenbahnerschütterungen. Die Prinzipien unterscheiden sich für die Minderungsmaßnahmen im Gleis, im Boden und bei Gebäuden. Kraftübertragungsfunktionen isolierter und nicht isolierter Gleissysteme, reflektierte und durchgelassene Wellenamplituden bei gefüllten Bodenschlitzen und die Übertragung der Freifeldschwingungen ins Gebäude werden analysiert. Bei den einfachen Gleismodellen muss der richtige Anteil der unabgefederte Fahrzeugmasse zum eindimensionalen Gleismodell hinzugefügt werden. Der Minderungseffekt eines gefüllten Bodenschlitzes ist von der Steifigkeit und nicht von der Impedanz des Schichtmaterials bestimmt. Bei einer elastischen Gebäudelagerung muss die Minderungswirkung mit der richtigen Boden- (Fundament-) Steifigkeit berechnet werden, und das abgeminderte Gebäudeverhalten hängt wesentlich von der effektiven Gebäudemasse ab, die mit zunehmender Frequenz deutlich kleiner als die starre Gebäudemasse ist. 2022 Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen Bludenz, Austria 17.5.2022 17.5.2022 2022-05-31 OPUS4-53704 Vortrag Auersch, Lutz Die Amplitudenabnahme im Boden bei Punkt- und Zuglast Die Linienlastgesetzmäßigkeit gilt nicht für Zuganregung. Die Punktlastgesetzmäßigkeit wird bei kurzen Zügen in größeren Entfernungen erreicht. Bei langen Zügen reduziert sich die Abnahme um r-0,3 für die theoretische exponentielle Dämpfungsabnahme, um r-0,5 für die vereinfachte potentielle Dämpfungsabnahme. Die gemessenen Abnahmereduktionen liegen in diesem Bereich. 2021 Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen Cologne/Germany und Online meeting 28.10.2021 28.10.2021 2021-11-08 OPUS4-53253 Beitrag zu einem Tagungsband Auersch, Lutz Zur Prognose von Erschütterungen aus Bahntunneln Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. Wien Steinhauser Consulting Engineers (STCE) 2021 Tagungsband der Wiener Dynamik Tage 2021 Wiener Dynamik Tage 2021 Vienna, Austria 22.7.2021 23.7.2021 1 11 2021-09-17 OPUS4-53254 Vortrag Auersch, Lutz Zur Prognose von Erschütterungen aus Bahntunneln Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. 2021 Wiener Dynamik Tage 2021 Vienna, Austria 22.07.2021 23.07.2021 2021-09-14 OPUS4-53313 Beitrag zu einem Tagungsband Auersch, Lutz Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. Zürich ETH Zürich SGEB 2021 Tagungsband zur 17. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik 17. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik Online meeting 16.09.2021 17.09.2021 17 18 2021-09-22 OPUS4-53314 Vortrag Auersch, Lutz Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. 2021 17. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik Online meeting 16.09.2021 17.09.2021 2021-09-20 OPUS4-45472 Vortrag Auersch, Lutz Strukturschwingungen und Schwingungsminderung - Bauwerksmodelle, Messungen vor Ort und auf dem Versuchsgelände der BAM Die Grundidee einer Schwingungsminderung ist es eine tiefe Eigenfrequenz der Struktur zu erreichen, so dass höhere Frequenzen abgemindert werden. Das gilt für die Minderung an der Quelle, zum Beispiel einem Eisenbahngleis, und für die Minderung am Empfänger, dem Gebäude. Die Eigenfrequenz ermittelt man aus dem Verhältnis der Auflagersteifigkeit und der Masse. Wie ist die Masse bei einem Gebäude zu wählen? Und wie ist die Untergrund-steifigkeit zu berücksichtigen? Als Referenzsituation ohne Minderungsma߬nahme? Der Beitrag bringt Rechenergebnisse zu abgefederten Gebäuden mit einfachen und komplexen (FE-) Modellen, Mess- und Rechenergebnisse zur Schwingungsübertragung von unabge-federten Gebäuden. Es wird der Einfluss der Abstimmfrequenz, der Bodensteifigkeit und der „starren" Gebäudemasse untersucht. Die komplexen Gebäudemodelle erlauben, neben der Berechnung einer elastischen Gebäudelagerung, auch die Variation von Gebäudepara¬metern zur Reduktion der Deckenschwingungen. Den Ergebnissen bei der Erschütterungs-übertragung in Gebäude werden zwei ähnliche Beispiele zur elastischen Maschinenlagerung und zur elastischen Gleislagerung gegenübergestellt. 2018 6. VDI-Fachtagung Baudynamik Würzburg, Germany 17.04.2018 18.04.2018 2018-07-16 OPUS4-45471 Beitrag zu einem Tagungsband Auersch, Lutz; Said, Samir Strukturschwingungen und Schwingungsminderung - Bauwerksmodelle, Messungen vor Ort und auf dem Versuchsgelände der BAM Die Grundidee einer Schwingungsminderung ist es eine tiefe Eigenfrequenz der Struktur zu erreichen, so dass höhere Frequenzen abgemindert werden. Das gilt für die Minderung an der Quelle, zum Beispiel einem Eisenbahngleis, und für die Minderung am Empfänger, dem Gebäude. Die Eigenfrequenz ermittelt man aus dem Verhältnis der Auflagersteifigkeit und der Masse. Wie ist die Masse bei einem Gebäude zu wählen? Und wie ist die Untergrundsteifigkeit zu berücksichtigen? Als Referenzsituation ohne Minderungsmaßnahme? Der Beitrag bringt Rechenergebnisse zu abgefederten Gebäuden mit einfachen und komplexen (FE-) Modellen, Mess- und Rechenergebnisse zur Schwingungsübertragung von unabgefederten Gebäuden. Es wird der Einfluss der Abstimmfrequenz, der Bodensteifigkeit und der „starren" Gebäudemasse untersucht. Die komplexen Gebäudemodelle erlauben, neben der Berechnung einer elastischen Gebäudelagerung, auch die Variation von Gebäudeparametern zur Reduktion der Deckenschwingungen. Den Ergebnissen bei der Erschütterungs-übertragung in Gebäude werden zwei ähnliche Beispiele zur elastischen Maschinenlagerung und zur elastischen Gleislagerung gegenübergestellt. Düsseldorf VDI-Verlag VDI Wissensforum 2018 Baudynamik 2018, VDI-Berichte 2321 2321 978-3-18-092321-5 6. VDI Fachtagung Baudynamik Würzburg, Germany 17.04.2018 18.04.2018 421 434 2018-07-16 OPUS4-50748 Vortrag Auersch, Lutz Das Prognosetool der BAM zur Emission, Transmission und Immission von Bahnerschütterungen Die gesamte Prognose wurde rechnerisch erfasst. Die Rechenverfahren sind einfach und schnell. Die Emission und die Immission verwendet Übertragungsmatrizen. Die Transmissionsrechnung beruht auf der Dispersion der Rayleighwelle. Die Verknüpfung erfolgt über die Anregungskraft auf den Boden und über die Freifeldamplitude am Gebäude. Es sind viele Eingabemöglichkeiten für Messdaten vorgesehen. Messungen können von einem Ort auf einen anderen Ort übertragen werden. 2020 98. Sitzung des Normausschusses "Schwingungsminderung in der Umgebung von Verkehrswegen" Online meeting 07.05.2020 07.05.2020 2020-05-13 OPUS4-48866 Vortrag Auersch, Lutz Wellenmessungen zur Identifikation der dynamischen Eigenschaften von Böden Erschütterungen durch Industrie und Verkehr, Schwingungen von Gebäuden, Fundamenten und Gleisen hängen im hohen Maße vom jeweiligen unterliegenden Boden ab. Die Eigenschaften des Bodens ermitteln wir mit Wellenmessungen vor Ort. Die Wellen werden in der Regel mit einem Impulshammer erzeugt und mit Geophonen als Schwinggeschwindigkeits-signale gemessen. Geophone sind aktive Sensoren, die eine kleine Messspannung liefern. Ein 72-kanaliges Messsystem mit entsprechenden Messverstärkern ist im Messwagen der Arbeitsgruppe eingebaut. Es werden im Vortrag fünf verschiedene Auswertemethoden vorgestellt. Im einfachsten Fall versucht man die Laufzeit von einem Geophon zum andern auszumessen und damit die vorherrschende Wellengeschwindigkeit zu ermitteln. Wir haben Wellengeschwindigkeiten von 30 m/s für Moorboden bis 1000 m/s für Felsboden gemessen. Der Boden hat aber nicht nur eine Wellengeschwindigkeit, sondern mehrere frequenzabhängige Wellen-geschwindigkeiten. Dadurch wird aus einem kurzen Hammerschlag eine längere Schwingung (Zerstreuung, Dispersion). Für die Auswertung von dispersiven Wellen nutzt man die spektrale Analyse, zunächst mit zwei Aufnehmern (SASW Spectral Analysis of Surface Waves), später mit einer ganzen Messachse (Multi-Station SASW). Schließlich kann man eine ganze Messachse auch mit verschiedenen Transformationsmethoden auswerten wie die f,v-Methode und Spatial AutoCorrelation SPAC Methode. Alle diese Methoden wurden von uns auf Messreisen in Deutschland, Österreich und der Schweiz getestet. Durch die Approximation der frequenzabhängigen Wellengeschwindigkeiten erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man die Übertra¬gungsfunktionen für Hammer- und Zuganregung berechnen. Bei etlichen Mess¬orten wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. 2019 Vortragsseminar der BAM-Abteilung 7 Bauwerkssicherheit Berlin, Germany 27.8.2019 27.8.2019 2019-09-05 OPUS4-48089 Vortrag Auersch, Lutz Zur Wirksamkeit und Berechenbarkeit von elastischen Gebäudelagerungen Es wird die Vorgehensweise erläutert wie die Notwendigkeit einer elastischen Gebäudelagerung geprüft wird. Es werden die Möglichkeiten und Schwächen vereinfachter Rechenverfahren dargestellt. Es folgen weitere Beispiele detaillierter Gebäudemodelle und ihres Schwingungsverhaltens. Schließlich greift eine aktuelle Bachelorarbeit die Fragestellung komplexen Gebäudeschwingungsverhaltens auf. Die letzte Folie zeigt dazu Gebäudemodelle, die an die konkreten Erschütterungsprognosen anknüpfen. 2019 Elastische Gebäudelagerungen Berlin, Germany 23.5.2019 23.5.2019 2019-05-29 OPUS4-49441 Beitrag zu einem Tagungsband Auersch, Lutz Adam, C. Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten - Messungen in Deutschland, Österreich und der Schweiz Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist. Innsbruck Universität Innsbruck 2019 Tagungsband der 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik (D-A-CH 2019) 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik (D-A-CH 2019) Innsbruck, Austria 26.09.2019 27.09.2019 1 8 2019-10-31 OPUS4-49445 Vortrag Auersch, Lutz Bahnerschütterungen bei verschiedenen Böden und Zuggeschwindigkeiten - Messungen in Deutschland, Österreich und der Schweiz Die Bundesanstalt für Materialforschung und -prüfung hat in den letzten 30 Jahren an vielen Orten Bahnerschütterungen gemessen. Dabei wurden immer auch Versuche zur Bestimmung der Bodeneigen-schaften durchgeführt, meist mit Hammeranregung, gelegentlich auch mit Schwingeranregung. Es werden verschiedene Auswertemethoden wie Seismogramm-Montage, Spektrale Analyse (SASW), Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen) vorgestellt. Durch Approximation der frequenzabhängigen Wellengeschwindigkeiten (Dispersion) oder der gemessenen Übertragungsfunktionen erhält man ein passendes Bodenmodell. Zu diesem Bodenmodell kann man dann die Übertragungsfunktionen für Hammer- und Zuganregung berechnen. Mit allgemeinen oder spezifischen Achslastspektren werden dann die Bahnerschütterungen prognostiziert und mit den Messergebnissen verglichen. Bei etlichen Messorten, insbesondere in der Schweiz, wurden deutliche Merkmale einer Bodenschichtung beobachtet. Es ergibt sich eine deutliche Reduktion der tiefen Frequenzanteile durch den steifen unterliegenden Halbraum. Die weiche Deckschicht bestimmt das hochfrequente Verhalten. Hier bewirkt die Materialdämpfung des Bodens oft einen starken Amplitudenabfall, sowohl mit der Entfernung als auch mit der Frequenz. Für den verbleibenden mittelfrequenten Anteil wurde an mehreren Messorten die Amplituden-Fahrgeschwindigkeits-Gesetzmäßigkeiten untersucht. Es gibt konstante bis stark ansteigende Amplituden, und es zeigt sich auch hier, dass der geschichtete Boden von entscheidender Bedeutung ist. 2019 16. D-A-CH Tagung Erdbebeningenieurwesen & Baudynamik (D-A-CH 2019) Innsbruck, Austria 26.09.2019 27.09.2019 2019-10-31 OPUS4-49448 Vortrag Auersch, Lutz Berechnung und Beeinflussung von Deckeneigenfrequenzen Es werden Erfahrungen zur Berechnung von Deckeneigenfrequenzen aus zahlreichen Projekten zusammengetragen. 2019 Projektbesprechung zum Hotelneubau Berlin, Germany 10.07.2019 10.07.2019 2019-10-31 OPUS4-50268 Vortrag Auersch, Lutz Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. 2020 Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen Munich, Germany 14.01.2020 14.01.2020 2020-01-23 OPUS4-46403 Vortrag Auersch, Lutz Wellenausbreitung in geschichteten Böden - Rechenmethoden und Messbeispiele von Zug- und Gebäudeerschütterungen Im ersten Teil werden Methoden der Wellenanalyse vorgestellt, Seismogramme, Multistation Analysis of Surface Waves (MASW), f,v-Analyse (Dispersion aus zweifacher Fourier-Analyse), Spatial AutoCorrelation (SPAC, hier auch für deterministische Quellen), und auf Messungen in Deutschland, Österreich und der Schweiz angewendet. Mit den Wellengeschwindigkeiten des Bodens werden die Berechnungsgrundlagen für die Erschütterungsausbreitung im Boden und die Bauwerk-Boden-Wechselwirkung geschaffen. Der zweite Teil beschäftigt sich mit der Wellensynthese, das heißt mit der Berechnung von Wellenfeldern (aus Wellenzahlintegralen). Die Rechnungen können wesentlich vereinfacht werden, wenn man die Dimensionsanalyse und Symmetrieüberlegungen ausnutzt, so dass maximal fünf dimensionslose Verschiebungsfunktionen verbleiben (im Vollraum sind es sogar nur zwei Verschiebungsfunktionen, die sich einfach explizit angeben lassen). Es gibt Ähnlichkeiten zwischen den Halbraum-Amplituden an der Oberfläche, den Halbraum-Amplituden in der Tiefe und der Wellenausbreitung im Vollraum. Die berechneten Wellenfelder (als Terzspektren in verschie-denen Entfernungen von der Erschütterungsquelle) werden verwendet, um die gemessene Übertragungsfunktionen des Bodens zu approximieren und Erschütterungen von Zugvorbeifahrten zu prognostizieren. Auch dies wird an einigen Messorten vorgeführt. Dabei werden einige gemessene Besonderheiten der Eisenbahnerschütterungen mit dem geschichteten Aufbau des Bodens erklärt. Der dritte Teil beschäftigt sich mit der Anwendung der Wellenfelder beziehungsweise der Punkt-lastlösungen beziehungsweise der Greenschen Funktionen in der Randelementmethode. Es wird ein einfaches Prinzip der Herleitung der Randelementmethode vorgeführt. Bei einer beliebigen Berandung benötigt man neben den Verschiebungswellenfeldern auch die Spannungswellen-felder. Eine einfache Berechnung der Spannungswellenfelder wird vorgeführt, die im Vollraum auf drei Spannungsfunktionen, ähnlich einfach wie die Verschiebungsfunktionen, führt. Durch die Kopplung der Randelementmethode mit der Finite-Element-Methode können dann Probleme der Bauwerk-Boden-Wechselwirkung gelöst werden. Der vierte Teil beschäftigt sich schließlich mit der Freifeld-Wellenanregung unter einem Gebäude und der Wellenanregung im Gebäude. Dabei geht es um die Wechselwirkung der Freifeldwellen mit starren oder flexiblen Fundamenten (Pfählen, Fundamentplatten) und den Übertragungs-faktoren zwischen dem Freifeld und dem Gebäude. Bei der Wellenanregung in einem Büro-gebäude in Wien konnten die gleichen Methoden wie bei der Wellenanregung im Boden eingesetzt werden, Seismogramme, MASW, Übertragungsfunktionen und Amplituden-Abstandsgesetze. 2018 Festkolloquium Baudynamik Graz, Austria 05.10.2018 05.10.2018 2018-10-31 OPUS4-56978 Vortrag Auersch, Lutz Prognoseverfahren für Bahnerschütterungen - DIN 45672-3, VDI 3837, HighSpeed2 und die Fahrzeug-Fahrweg-Boden Wechselwirkung Die VDI Richtlinie 3837 enthält detaillierte Angaben zur Erschütterungsemission. Die DIN 45672-3 enthält nur den Tunnel- oder einen Bodenmesspunkt als Ausgangspunkt der Prognose. Die Erschütterungsanregung durch die Fahrzeug-Fahrweg-Wechselwirkung wird beschrieben. Die ERgebnisse der BAM stimmen sehr gut mit dem Prognosekonzept von Highspeed 2 überein. Dies wird an den Punkten 1. Störgrößen, 2. Achsimpulse, 3. Tunnelstrecken aufgezeigt. 2023 Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen Frankfurt/M., Germany 08.02.2023 2023-02-10 OPUS4-57952 Vortrag Auersch, Lutz Frequenz- und bodenabhängige Prognose und Minderung von Bahnerschütterungen Die Prognose und Minderung von Bahnerschütterungen haben eine lange Tradition in der Bundesanstalt für Materialforschung und -prüfung. Im Jahr 2006 wurde eine Prognose-Software fertiggestellt, die viele Forschungs- und Messergebnisse zusammenfasst. Sie umfasst die Teilbereiche Emission (die Anregung durch die Fahrzeug-Fahrweg-Untergrund-Wechselwirkung), die Transmission (die Ausbreitung durch den Boden) und die Immission (die Übertragung vom Freifeld in ein Gebäude). Die Prognose geschieht in allen Teilen mit einfachen Formeln, die veröffentlicht sind und zur Anwendung für Jedermann zur Verfügung stehen. Es werden Beispiele zur Emission und zur Transmission gezeigt. Im Bereich Transmissionsprognose werden zu den Anregungskräften (aus dem Emissionsteil) die Bodenerschütterungen als Schwinggeschwindigkeitsterzspektren berechnet. Das Ergebnis hängt stark von der Bodensteifigkeit, -dämpfung und -schichtung ab. Dies wurde später mit einer Messkampagne in der Schweiz an 10 Messorten bestätigt (Bild 1). Die Berechnung erfolgt näherungsweise für einen geschichteten Boden mit einer frequenzabhängigen Wellengeschwindigkeit (Dispersion) oder einem tiefenabhängigen Wellengeschwindigkeitsprofil. Die Anregungskräfte werden im Prognosebereich Emission mit einem 2-dimensionalen Gleismodell berechnet (Bild 2). 1-dimensionale Modelle liefern meist falsche Ergebnisse und 3-dimensionale Modelle (zum Beispiel mit der kombinierten Finite-Element-Randelement-Methode) sind für eine Erschütterungs¬prognose sicherlich zu aufwändig. Das 2-dimensionale Modell wurde an 3-dimensionale Ergebnisse so angepasst, dass die Ergebnisse für viele Gleise und Böden annähernd zutreffen. Auch Minderungs¬maßnahmen am Gleis können mit diesem Modell sehr gut berechnet werden. Die Prognoseverfahren wurden in den folgenden Jahren weiter verfeinert. Es wurde die quasi-statische Anregung durch die bewegten statischen Zuglasten mit einer Näherungsformel ergänzt, so dass auch das tieffrequente Nahfeld realistisch erfasst werden kann. Mit der Berücksichtigung der Achsfolge (insbesondere zwischen den Achsen im Drehgestell) ergeben sich zwei typische Minima in den Erschütterungsspektren, die oft auch in den Messungen beobachtet werden. Der Amplitudenanteil zwischen diesen beiden Minima ist oft stärker angehoben, so dass hier eine zusätzliche Erschütterungsanregung vermutet wird. Dieser Anteil kann rein empirisch prognostiziert werden, so wie das in den englischen Prognosen (zuletzt für das Highspeed2-Projekt) enthalten ist. Die Begründung dieses Anteils ist allerdings nicht die Achsfolge, sondern die Zerstreuung der statischen Achslastimpulse durch einen unregelmäßigen Gleisuntergrund und Boden. Die messtechnische Ermittlung eines Minderungseffektes ist komplizierter als allgemein angenommen. Es reicht nicht aus, jeweils an einem Messpunkt in der Nähe eines Gleises mit und ohne Minderungs¬maßnahme die Erschütterungen zu messen und aus dem Verhältnis der Amplituden (beziehungsweise aus der Differenz der Pegel) „die Einfügedämmung" zu ermitteln. Es wird an Beispielen gezeigt, wie man hier sinnvoller vorgehen kann. 1. Zunächst ist es wichtig, nicht nur die Einfügedämmung sondern auch die Originalspektren mit und ohne Minderung zu dokumentieren und zu veröffentlichen, damit man kontrollieren kann, ob wesentliche Amplituden und Frequenzbereiche reduziert sind oder ob es sich um eher zufällige Minderungen oder Verstärkungen handelt. (Beispiel Unterschottermatte/Raron, Müller/SBB) 2. Der Messpunkt sollte nicht im Nahbereich des Gleises liegen, da ansonsten eine zu günstige, falsche Einfügedämmung bestimmt wird. (Beispiel Tunnel/ Leipzig/Breitsamter) 3. Um Zufälligkeiten zu vermeiden, sollte man an mehr als einem Punkt messen. (Beispiel Unterschotterplatte/Altheim/Auersch) 4. Man sollte eigentlich immer auch die Bodenkennwerte (Steifigkeit, Dämpfung, Amplituden-abnahme, Übertagungsfunktion) messen. Selbst bei nahegelegene Messquerschnitten kann man Überraschungen erleben. (Beispiel erste ICE-Messungen/bei Würzburg/Auersch) 5. Bei verschiedenen Bodenkennwerten kann man eine Korrektur durchführen. (Beispiel Gleis-tröge/Mistler) Am besten bestimmt man ein äquivalentes Kraftspektrum zu jedem Messort und jedem Messzug (Beispiel Feste Fahrbahn/Gardelegen/Auersch) 6. Prinzipiell gibt es nicht die Einfügedämmung einer Maßnahme. Die Einfügedämmung ist immer boden- und referenzsystemabhängig. Die „beste" Einfügungsdämmung erhält man mit einem steifen Untergrund (Beispiel Unterschottermatte/Tunnel/München Gasteig/Wettschureck) Das heißt aber nicht, dass die Maßnahme durch einen künstlich versteiften Untergrund besser wird (Beispiel Unterschottermatten/RRT2006/Auersch) Es werden Messbeispiele gezeigt, die alle neben einer hochfrequenten dynamischen Minderung auch eine mittelfrequente quasi-statische Minderung aufweisen. Dabei wird der mittelfrequente Zerstreuanteil der statischen Achslastimpulse durch die breitere Lastverteilung und damit die Impulsdehnung der Achslastimpulse reduziert. Diese Impulsdehnung lässt sich mit dem 2-dimensionalen Gleismodell berechnen. Die Minderungswirkung hängt aber wiederum vom Referenzsystem und dessen unregel¬mäßiger Steifigkeitsverteilung ab. Je unregelmäßiger der Boden und Gleisuntergrund des Referenz¬systems, desto stärker ist die Minderungswirkung. 2023 24. Symposium für Baudynamik und Erschütterungsmessungen Dübendorf, Switzerland 09.06.2023 09.06.2023 2023-07-20 OPUS4-57953 Beitrag zu einem Tagungsband Auersch, Lutz Frequenz- und bodenabhängige Prognose und Minderung von Bahnerschütterungen Die Prognose und Minderung von Bahnerschütterungen haben eine lange Tradition in der Bundesanstalt für Materialforschung und -prüfung. Im Jahr 2006 wurde eine Prognose-Software fertiggestellt, die viele Forschungs- und Messergebnisse zusammenfasst. Sie umfasst die Teilbereiche Emission (die Anregung durch die Fahrzeug-Fahrweg-Untergrund-Wechselwirkung), die Transmission (die Ausbreitung durch den Boden) und die Immission (die Übertragung vom Freifeld in ein Gebäude). Die Prognose geschieht in allen Teilen mit einfachen Formeln, die veröffentlicht sind und zur Anwendung für Jedermann zur Verfügung stehen. Es werden Beispiele zur Emission und zur Transmission gezeigt. Im Bereich Transmissionsprognose werden zu den Anregungskräften (aus dem Emissionsteil) die Bodenerschütterungen als Schwinggeschwindigkeitsterzspektren berechnet. Das Ergebnis hängt stark von der Bodensteifigkeit, -dämpfung und -schichtung ab. Dies wurde später mit einer Messkampagne in der Schweiz an 10 Messorten bestätigt. Die Berechnung erfolgt näherungsweise für einen geschichteten Boden mit einer frequenzabhängigen Wellengeschwindigkeit (Dispersion) oder einem tiefenabhängigen Wellengeschwindigkeitsprofil. Die Anregungskräfte werden im Prognosebereich Emission mit einem 2-dimensionalen Gleismodell berechnet. 1-dimensionale Modelle liefern meist falsche Ergebnisse und 3-dimensionale Modelle (zum Beispiel mit der kombinierten Finite-Element-Randelement-Methode) sind für eine Erschütterungs¬prognose sicherlich zu aufwändig. Das 2-dimensionale Modell wurde an 3-dimensionale Ergebnisse so angepasst, dass die Ergebnisse für viele Gleise und Böden annähernd zutreffen. Auch Minderungs¬maßnahmen am Gleis können mit diesem Modell sehr gut berechnet werden. Die Prognoseverfahren wurden in den folgenden Jahren weiter verfeinert. Es wurde die quasi-statische Anregung durch die bewegten statischen Zuglasten mit einer Näherungsformel ergänzt, so dass auch das tieffrequente Nahfeld realistisch erfasst werden kann. Mit der Berücksichtigung der Achsfolge (insbesondere zwischen den Achsen im Drehgestell) ergeben sich zwei typische Minima in den Erschütterungsspektren, die oft auch in den Messungen beobachtet werden. Der Amplitudenanteil zwischen diesen beiden Minima ist oft stärker angehoben, so dass hier eine zusätzliche Erschütterungsanregung vermutet wird. Dieser Anteil kann rein empirisch prognostiziert werden, so wie das in den englischen Prognosen (zuletzt für das Highspeed2-Projekt) enthalten ist. Die Begründung dieses Anteils ist allerdings nicht die Achsfolge, sondern die Zerstreuung der statischen Achslastimpulse durch einen unregelmäßigen Gleisuntergrund und Boden. Die messtechnische Ermittlung eines Minderungseffektes ist komplizierter als allgemein angenommen. Es reicht nicht aus, jeweils an einem Messpunkt in der Nähe eines Gleises mit und ohne Minderungsmaßnahme die Erschütterungen zu messen und aus dem Verhältnis der Amplituden (beziehungsweise aus der Differenz der Pegel) „die Einfügedämmung" zu ermitteln. Es wird an Beispielen gezeigt, wie man hier sinnvoller vorgehen kann. 1. Zunächst ist es wichtig, nicht nur die Einfügedämmung sondern auch die Originalspektren mit und ohne Minderung zu dokumentieren und zu veröffentlichen, damit man kontrollieren kann, ob wesentliche Amplituden und Frequenzbereiche reduziert sind oder ob es sich um eher zufällige Minderungen oder Verstärkungen handelt. (Beispiel Unterschottermatte/Raron, Müller/SBB) 2. Der Messpunkt sollte nicht im Nahbereich des Gleises liegen, da ansonsten eine zu günstige, falsche Einfügedämmung bestimmt wird. (Beispiel Tunnel/ Leipzig/Breitsamter) 3. Um Zufälligkeiten zu vermeiden, sollte man an mehr als einem Punkt messen. (Beispiel Unterschotterplatte/Altheim/Auersch) 4. Man sollte eigentlich immer auch die Bodenkennwerte (Steifigkeit, Dämpfung, Amplituden-abnahme, Übertagungsfunktion) messen. Selbst bei nahegelegene Messquerschnitten kann man Überraschungen erleben. (Beispiel erste ICE-Messungen/bei Würzburg/Auersch) 5. Bei verschiedenen Bodenkennwerten kann man eine Korrektur durchführen. (Beispiel Gleis-tröge/Mistler) Am besten bestimmt man ein äquivalentes Kraftspektrum zu jedem Messort und jedem Messzug (Beispiel Feste Fahrbahn/Gardelegen/Auersch) 6. Prinzipiell gibt es nicht die Einfügedämmung einer Maßnahme. Die Einfügedämmung ist immer boden- und referenzsystemabhängig. Die „beste" Einfügungsdämmung erhält man mit einem steifen Untergrund (Beispiel Unterschottermatte/Tunnel/München Gasteig/Wettschureck) Das heißt aber nicht, dass die Maßnahme durch einen künstlich versteiften Untergrund besser wird (Beispiel Unterschottermatten/RRT2006/Auersch) Es werden Messbeispiele gezeigt, die alle neben einer hochfrequenten dynamischen Minderung auch eine mittelfrequente quasi-statische Minderung aufweisen. Dabei wird der mittelfrequente Zerstreuanteil der statischen Achslastimpulse durch die breitere Lastverteilung und damit die Impulsdehnung der Achslastimpulse reduziert. Diese Impulsdehnung lässt sich mit dem 2-dimensionalen Gleismodell berechnen. Die Minderungswirkung hängt aber wiederum vom Referenzsystem und dessen unregelmäßiger Steifigkeitsverteilung ab. Je unregelmäßiger der Boden und Gleisuntergrund des Referenzsystems, desto stärker ist die Minderungswirkung. Zürich Ziegler Consultants 2023 Tagungsband "Baudynamik und Erschütterungsmessungen" 24. Symposium für Baudynamik und Erschütterungsmessungen Dübendorf, Sitzerland 09.06.2023 09.06.2023 1 32 2023-07-24