Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-48074 Vortrag Weimann, Karin Mantelverordnung - aktueller Stand Hintergrund, Inhalt und Ziele sowie aktueller Stand der Mantelverordnung 2019 Thomas Baustoffthemen - Zukünftiges Recycling Jena, Germany 21.02.2019 2019-05-29 OPUS4-48220 Vortrag Weimann, Karin Gypsum plasterboard recycling The use of secondary building materials can meet the requirements of sustainability in several ways: the extended time availability of primary raw materials and, thereby, the protection of natural ressources as well as the conservation of landfill sites. Regarding the predicted decrease of gypsum supply in Germany, particularly the recycling of gypsum (calcium sulfate) is of growing importance. Currently, the gypsum demand is fulfilled (at least 60%) by gypsum as side product from coal-fired power plants (FGD Gypsum). Germany's natural gypsum deposits fulfil the remaining gypsum demand. Due to national climate protection goals the gypsum supply from coal power plants will decrease significantly in the future. In addition, the content of sulfates in other secondary building materials, in particular in recycled concrete aggregates, should be minimized for quality reasons. Separated gypsum can be used in gypsum production if the high quality requirements for recycled gypsum are met. Accordingly, there have been significant advancements in the processing of gypsum residues in the last years. Since almost all processing steps in the recycling process are associated with environmental impacts, an evironmental evaluation of the use of recycled gypsum as a substitute in gypsum production has to be carefully conducted. The presentation focusses on the techniques for generating recycled gypsum from gypsum plaster boards, the related quality requirements and a comprehensive environmental evaluation of the complete process. 2019 MINEA Workshop: Recovery Potential of Construction and Demolition Waste Brussels, Belgium 21.03.2019 22.03.2019 2019-06-17 OPUS4-48237 Posterpräsentation Vogel, Christian Effect of Nitrification Inhibitor on Nitrogen Forms in Soil analyzed by Nitrogen K edge micro XANES Spectroscopy Specific co-fertilization of nutrients can enhance their plant-availability and thus the yield of plants. To investigate this effect, we performed a pot experiment with three different P-fertilizers and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of nitrogen (N) in the soil via novel X-ray spectroscopic method. The application of NI with the N fertilizer led to a higher dry matter yield of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called "next generation fertilizers" as plants have access to nutrients according to their current demand. 2019 Workshop for X-ray and neutron imaging applications in soil sciences Lund, Sweden 17.06.2019 18.06.2019 2019-06-20 OPUS4-49050 Beitrag zu einem Tagungsband Schraut, Katharina; Adamczyk, Burkart; Simon, Sebastian; von Werder, Julia; Meng, Birgit; Stephan, D.; Kargl, F.; Adam, Christian Formation and chemical stabilisation of tricalcium-silicate during solidification from the melt of post-treated metallurgical slags Tricalcium-silicate (C3S) or Alite is the most important mineral in Portland cement. Since pure tricalcium-silicate is only stable above temperatures of 1250 °C, its decomposition has to be prevented technically by fast cooling after the sintering process. At room temperature, the decomposition velocity is very slow so that metastable tricalcium-silicate is obtained. Although the mechanisms of clinker phase formation during burning process of Portland cement in a rotary kiln were solved and improved over the years, in view of possible economic and ecological benefits current projects aim to produce clinker phases from metallurgical slags. Recent studies discovered that the mineral phase which remained after a reducing treatment and separation of formed metallic iron from molten Linz-Donawitz (LD-) slags contained about 60 wt.% Alite despite it was cooled slowly. Because the results could be verified using slags from different origins and varying cooling velocities a chemical stabilisation of the Alite can be assumed. First tests in mortars indicate that workability, hardening and solid state properties are comparable with an ordinary Portland cement. An application of the observed phenomenon in cement production requires enhanced knowledge about formation and stabilisation conditions of Alite during crystallisation from melts in contrast to the sintering reactions in conventional Portland cement production. Therefore, this study focuses on the stabilisation mechanisms of Alite in consolidating melts. Samples from different melting experiments are analysed to determine stabilising factors. 2019 Proceedings of the 15th International Congress on the Chemistry of Cement 15th International Congress on the Chemistry of Cement Prag, Czech Republic 16.09.2019 20.09.2019 Paper 492, 1 10 2019-09-23 OPUS4-49057 Vortrag Vogel, Christian Specification of bioavailable nutrients and pollutants in the environment by combining DGT and spectroscopic techniques Previous research shows that analytical methods based on Diffusive Gradients in Thin films (DGT) provide very good correlations to the amount of bioavailable nutrients and pollutants in the environmental samples. However, these DGT results do not identify which compound of the specific element has the high bioavailability. Using various spectroscopic techniques (infrared, XANES and NMR spectroscopy) to analyze the dried DGT binding layers after deployment could allow us to determine the specific elements or compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared and NMR spectroscopy, respectively. In addition, XANES spectroscopy allows for the specification of nutrients and pollutants (e.g. chromium) on the DGT binding layer. Furthermore, microspectroscopic techniques make it also possible to analyze compounds on the DGT binding layer with a lateral resolution down to 5 µm2. Therefore, species of elements and compounds of e.g. a spatial soil segment can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients and pollutants in the environment. Here we will present the advantages and limitations of this novel combination of techniques. 2019 6th Conference on Diffusive Gradients in Thin Films Vienna, Austria 17.09.2019 20.09.2019 2019-09-23 OPUS4-49058 Posterpräsentation Vogel, Christian Determination of chromium(VI) in phosphorus fertilizers made from recycled materials by DGT Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizer can also contain toxic pollutants e.g. chromium (Cr) in the hexavalent state (Cr(VI)), which is regulated with low limit values in agricultural products (German fertilizer ordinance limit: 2 mg/kg Cr(VI)). The determination of Cr(VI) in these novel fertilizer matrices can be hampered by redox processes that lead to false results with the standard wet chemical extraction method (German norm DIN EN 15192). Therefore, we analyzed Cr(VI) in various P-fertilizers with the DGT technique. DGT devices equipped with a APA (polyacrylamide) diffusion layer and Cr(VI) selective N-methyl-D-glucamine (NMDG) binding layer were used for the study. After a 24 h conditioning period of the fertilizer at 60% of the water holding capacity (WHC), the fertilizers were brought to 100% WHC, transferred onto the DGT devices and deployed for 24 h at 25°C. The extraction of Cr from the DGT binding layer was carried out with 1 M HNO3 for 24 h. The Cr-concentrations of the extract were determined by means of ICP-MS. We found a good correlation between the standard wet chemical extraction and the DGT method for the whole range of P-fertilizers. However, partly soluble Cr(VI) compounds cannot be detected in full extent by the DGT method that is best suited for mobile Cr(VI). Furthermore, Cr K-edge XANES spectroscopy showed that the Cr(VI)-selective DGT binding layer also adsorbs mobile Cr(III) compounds from acid treatment of phosphates which can therefore cause an overestimation of Cr(VI). The DGT method was very sensitive and in most cases selective for the analysis of Cr(VI) in P-fertilizers made from recycled materials. However, the results of certain types of P-fertilizers containing mobile Cr(III) or partly immobile Cr(VI) show that still some optimization of the method is required to avoid over- or underestimation of Cr(VI). 2019 6th Conference on Diffusive Gradients in Thin Films Vienna, Austria 17.09.2019 20.09.2019 2019-09-23 OPUS4-49060 Posterpräsentation Kratz, S. Development of a standard substrate to facilitate the use of DGT for the assessment of P recycling fertilizers P recycling fertilizers are gaining increasing importance in our efforts to close nutrient cycles. An unsatisfactory performance of standard chemical extraction methods to assess the fertilizing effects of such products was reported. They demonstrated that DGT extractions of incubated soil/fertilizer mixtures were able to predict the fertilizing effects of the respective products more accurately. Since DGT works with soil/fertilizer mixtures, its interpretation is soil-dependent. Therefore, in order to facilitate its use as a tool to predict fertilizer performance, it needs to be standardized based on a standard substrate. This research aims to develop a standard substrate based on which evaluation categories for the DGT fertilizer extraction can be derived. The substrate composition should allow to vary the most important soil properties determining the plant availability of fertilizer P. It must also be reproducible at any time and any place. Substrate variants with varying proportions of quartz sand, a clay mineral and sphagnum peat were prepared and set to pH-levels 5.5 and 7 by addition of CaCO3. 7 variants were incubated with a set of test fertilizers (2 recycling fertilizers based on sewage sludge ash and 2 conventional mineral fertilizers) for 2 weeks. Substrate/fertilizer mixtures were then extracted with DGT and an ANOVA was performed to test if the DGT extraction was able to depict significant differences between fertilizers and substrate variants. An 8-week pot trial with ryegrass (3 cuts) was set up with the same substrate variants and test fertilizers. P uptake was determined to assess the fertilizing effect and correlated with the results of the DGT extractions. Statistically significant differences were found between DGT results for the various test fertilizers and substrate variants, indicating that DGT is able to differentiate between P solubility of fertilizers in relation to substrate quality. DGT results showed a strong relationship with P uptake, confirming that this method is suitable to predict the fertilizing effect of P fertilizers. Further optimization of substrate composition and tests with a wider variety of crops and fertilizer types are needed, before evaluation categories for DGT values can be derived. 2019 6th Conference on Diffusive Gradients in Thin Films Vienna, Austria 17.09.2019 20.09.2019 2019-09-23 OPUS4-49603 Beitrag zu einem Tagungsband Sichler, Theresa; Adam, Christian; Montag, D.; Ehm, J.; Barjenbruch, M.; Pinnekamp, J. Holm, O.; Thomé-Kozmiensky, E.; Quicker, P.; Kopp-Assenmacher, S. Auswirkungen der novellierten AbfKlärV auf die Kreislaufführung von Pflanzennährstoffen Because of the longstanding oversupply of nutrients in Germany, waste and fertilization legislation has been amended in 2017. As the new laws do still not meet the European nitrate ordinance, fertilization laws must be tightened again. In consequence, there is a rising competition for land between sewage sludge and organic fertilizers. Furthermore, the new sewage sludge ordinance (AbfKlärV) contains stricter thresholds and a ban on agricultural sewage sludge utilization for WWTPs > 50,000 p.e. from 2029. WWTPs which do not use their sludge for agriculture have to recover phosphorus from then on. However, sludges with less than 2% P content are not affected by that obligation. Every federal state of Germany must report amounts and quality of agricultural utilized sewage sludge yearly. An evaluation of raw data from 10 federal states shows that nearly 40% of both WWTPs and sewage sludge volume fall below the recovery limit of 2%. On the other hand, this means less than 30% of the P potential. In addition, there is no information whether the sludges fall reliably below the limit as required by the ordinance. This project aims to investigate this reliability by regarding the variations in the P content of sewage sludge. For this reason, samples will be taken monthly at 10 representative WWTPs over a year. Whereas phosphorus will still mostly be subject of recovery other nutrients are not affected by this. As a result, large amounts of N, K, Mg and Ca will be increasingly removed from the cycle. In 2017, WWTPs > 50,000 p.e. accounted for 30-60% of the nutrient potentials. These potentials will probably get lost to a large extent due to the fertilization ban. Many small WWTPs are also currently changing their utilization strategy from agriculture to incineration to ensure a safe disposal in future. Therefore, we can expect that even larger amounts of nutrients apart from phosphorus will be discharged from the circular economy. In comparison to the domestic sales volume of mineral fertilizers these other nutrients do only account for a very small fraction. A recovery could nevertheless replace parts of the mineral fertilizers, thus reducing environmental impacts. Energy consumption for technical nitrogen fixation is high and nutrient cycles are strongly anthropogenic influenced with diverse consequences such as eutrophication, acidification and endangered groundwater resources. Sewage sludge contains several micronutrients next to the macronutrients P, N, K, Mg, Ca and S. Because of lacking information on the actual German need for micronutrients contents and freights cannot evaluated. Moreover, former sewage sludge fertilization was probably not needs-based. It is therefore not possible to estimate a true loss in micronutrients due to the amended sewage sludge ordinance. Neuruppin Thomé-Kozmiensky Verlag vivis 2019 Verwertung von Klärschlamm 2 2 978-3-944310-49-7 Klärschlammkonferenz Berlin, Germany 04.11.2019 05.11.2019 362 374 2019-11-20 OPUS4-49604 Vortrag Sichler, Theresa Auswirkungen der novellierten AbfKlärV auf die Kreislaufführung von Pflanzennährstoffen Die landwirtschaftliche Klärschlammverwertung ist in der Bundesrepublik Deutschland seit Jahren rückläufig. Neben den Risiken durch Schadstoffeinträge gibt es in Deutschland Regionen mit einem stark erhöhten Nährstoffüberschuss. Um die Grundwasserbelastung zu verhindern wurde u.a. das Düngerecht verschärft, was die Flächenkonkurrenz zwischen Klärschlamm und Wirtschaftsdünger vergrößern wird. Es ist davon auszugehen, dass sich die neuen Regelungen im Düngerecht und der Klärschlammverordnung massiv auf die landwirtschaftliche Verwertung von Klärschlamm und damit auf die Kreislaufwirtschaft verschiedener Nährstoffe auswirken werden. In diesem Beitrag werden erste Ergebnisse des Projekts extraWERT vorgestellt. 2019 Klärschlammkonferenz Berlin, Germany 04.11.2019 05.11.2019 2019-11-20 OPUS4-49144 Posterpräsentation Vogel, Christian Effect of Nitrification Inhibitor on Nitrogen Forms in Soil and Phosphorus Uptake of Plants Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P-fertilizers from recycled materials which often have a lower plant-availability compared to commercial P-fertilizers but are expected to play an increasingly important role into the future (Kratz et al. 2019). One promising way to increase the plant-availability of the fertilizer P is a co-fertilization with specific nitrogen (N) forms which can enhance the P uptake and make P-fertilizers from recycled material more competitive to commercial phosphate rock-based P-fertilizers (Rahmatullah et al. 2006; Vogel et al. 2018). To investigate this effect, we performed a pot experiment with three different P-fertilizers (sewage sludge-based, phosphate rock and triple superphosphate) and ammonium nitrate sulfate as a co-fertilizer, without and with a nitrification inhibitor (NI), and analyzed the form of N and P in soil via a suite of chemical and novel X-ray spectroscopic methods. The application of NI with the P and N fertilizers led to a higher dry matter yield and a higher P uptake of maize. Novel N K-edge micro-X-ray absorption near-edge structure (micro-XANES) spectroscopy identified that the application of a NI promotes the temporary formation of a non-exchangeable N in detectable hot-spots in the soil. The subsequent slow release and prolonged availability of N during plant growth leads to higher yield and nutrient uptake. It can be concluded that NIs lead to a temporary fixation of ammonium-N in a pool that can be accessed by plant roots. Those types of available nutrient pools meet the idea of so-called "next generation fertilizers" as plants have access to nutrients according to their current demand. 2019 Annual Meeting of the German Society of Plant Nutrition (DGP) Berlin, Germany 25.09.2019 27.09.2019 2019-09-30 OPUS4-49272 Posterpräsentation Dombinov, V. Does co-combustion of bagasse and chicken manure affect the bioavailability of P from ash to soybeans? Brazilian farming industry consumed around 2.2 million tons of phosphorus (P) fertilizers in 2016. The agricultural industry depends on imported P fertilizers and over 98% of P fertilizers were used for sugarcane, soybean and maize production. An alternative is to use P from sugarcane bagasse. Bagasse is the fibrous plant material remaining after extraction of sugarcane juice, and it is combusted for energy production. Remaining ash con-tains up to 0.6 wt% P. The use of bagasse ash (BA) as P fertilizer could decrease the annual import of P fertilizers by 6% of the imported P fertilizer based on 2016 values. Since the bioavailability of P from BA to plants is poorly investigated, this study addresses the effects of (i) gasification tempera-ture (710-849°C), (ii) processing method (gasification vs. combustion), (iii) biomass modifications by co-processing bagasse with chicken manure (BA+CM), and (iv) the soil (Brazilian Oxisol soil vs. nutri-ent poor substrate) on the bioavailability of P from BA to soybeans (Glycine max). Gasification of BA at 806 °C resulted in significantly highest uptake of P by soybeans and was around 0.33 mmol after 51 days growing. The bioavailability of P significantly increased due to co-gasification of bagasse and chicken manure (BA+CM) and the soybeans took up around 16% more P. Compared to the nutrient-poor substrate, the bioavailability of P in BA+CM ash treated Oxisol soil was signifi-cantly lower by 46% and there was no significant effect of processing method on the bioavailability of P from the BA+CM ash to soybeans. Contrary to the Oxisol soil, the bioavailability of P from co-combusted BA+CM ash was significantly higher compared to co-gasified BA+CM ash. In conclusion, co-processing of bagasse with nutrient rich residues can increase the value of BA as P fertilizer. The bioavailability of P from ash to plants depends on the P forms. Mineralogical analyses of ash P forms by NMR and X-ray diffraction are in progress and will be presented at the conference. 2019 European Biomass Conference & Exhibition Lisbon, Portugal 26.05.2019 30.05.2019 2019-10-16 OPUS4-49554 Vortrag Adam, Christian What is in your opinion the fertiliser of the future? Conventional fertilisers have their disadvantages as nutrient release is not synchronised with the demand of plants. Several approaches of "next generation fertilisers" are aiming at controlled nutrient release. Recycling fertilisers are often not soluble in water but fully plant available. They are suitable raw materials for the production of new types of controlled release fertilisers. 2019 CLOOP-Workshop "What is in your opinion the fertiliser of the future?" Berlin, Germany 22.10.2019 23.10.2019 2019-11-18 OPUS4-49555 Vortrag Adam, Christian Verwertung carbonfaserhaltiger Reststoffe in der Pyrometallurgie Carbonfasern sind äußerst stabil und werden auch in Anlagen zur Verbrennung von Sondermüll kaum zerstört. Beim Handling carbonfaserhaltiger Abfälle können Gesundheitsrisken auftreten (Abgabe von WHO-Fasern). Es werden Methoden der Verwertung carbonfaserhaltiger Reststoffe in der Pyrometallurgie diskutiert. 2019 UBA Fachaustausch: Aufbereitung und Verwertung carbonfaserhaltiger Abfälle Dessau, Germany 19.09.2019 20.09.2019 2019-11-18 OPUS4-48267 Vortrag Weimann, Karin Faserhaltige Abfälle - "End-of-Life"-Herausforderungen Vortrag über die End-of-Life-Problematik von carbonfaserverstärkten Werkstoffen und potentielle Entsorgungswege. 2019 9. Sitzung LAGA Ad-hoc-Ausschuss "Entsorgung faserhaltiger Abfälle" Mannheim, Germany 23.01.2019 23.01.2019 2019-06-24 OPUS4-48614 Posterpräsentation Smol, M. Towards circular economy for phosphorus in Poland In the transition to the Circular Economy (CE) model, where the added value of products is kept as long as possible and waste is eliminated, the sustainable management of raw materials plays a key role. In above CE model, especial attention is paid to CRMs which are economically and strategically important for the European economy, but have a high-risk associated with their supply. One of the most important element which can not be replaced and is an essential element for human nutrition, yet limited resource is phosphorus (P). An importance of issues related to sustainable P management results from EU legislation, which indicated P as a Critical Raw Material (CRM). The sustainable management of P-resources is especially important for the Baltic region. A consequence of waterborne loads passing into the sea, mainly as wastewater with a high P content is the eutrophication of the Baltic Sea environment. Due to the largest inputs of P (37%) into the Baltic Sea originate from Poland, the development of sustainable solutions aimed at more rational P management for this country is externally important. 2019 International Phosphorus Workshop 9 Zurich, Switzerland 08.07.2019 12.07.2019 2019-08-05 OPUS4-48616 Posterpräsentation Smol, M. Possibility of recovering phosphorus from sewage sludge ash (SSA) in Poland Due to the vital importance of phosphorus (P) and its increasing scarcity as a natural resource, phosphorus recovery has recently gained significant scientific and technical interest. An interesting sources of phosphorus are sewage sludge (SS) and sewage sludge ash (SSA) due to the major part of the phosphate from P rich wastewater is transferred to the sludge (approx. 90%). Despite the fact that the raw materials base is large (PURE report indicates that in 2020 the amount of sewage sludge generated in Poland will reach 180% of the dry matter of sewage sludge produced in 2010), at present recycling of phosphorus is not a commonly used practice in Poland. 2019 International Phosphorus Workshop 9 Zurich, Switzerland 08.07.2019 12.07.2019 2019-08-05 OPUS4-48362 Beitrag zu einem Tagungsband Hamann, Christopher; Adam, Christian; Stolle, Dirk; Spanka, M.; Auer, G. Thermochemical treatment of waste products from iron and steel production Blast furnace (BF) sludge and electric arc furnace (EAF) dust are typical wastes that incur from iron and steel production. In addition to iron, calcium, carbon, and silicon they usually contain high concentrations of heavy metals such as zinc, lead, and cadmium that are potentially hazardous to the environment, rendering disposal in landfills ecologically problematic and costly. Consequently, pyrometallurgical, hydrometallurgical, and hybrid methods for selective elimination of non-ferrous heavy metals from BF sludge and EAF dust have been conceived, of which only the carbothermic reduction route taken in the so-called Waelz rotary kiln process has been proven to be economically successful. However, this process has several drawbacks regarding efficiency of heavy-metal removal and recovery of iron, and it does not allow processing of BF sludge. In this study, we investigated the efficiency and feasibility of selective chlorination and evaporation of non-ferrous heavy metals, particularly zinc and lead, in both BF sludge and EAF dust as an alternative, thermochemical processing route. To this end, hydrochloric acid and iron(II) chloride solution have been used as chlorinating agents, and the process of heavy-metal chlorination and evaporation has been investigated under inert operating conditions, at variable chlorine concentrations, and at temperatures between 500 and 1200 °C. High zinc and lead removal efficiencies of > 99.5 % were achieved with both chlorinating agents, but iron(II) chloride turned out to be overall more efficient for removal of zinc and lead from BF sludge and EAF dust. Interestingly, and in contrast to previous studies, the iron was completely retained in the processed solid residue, therefore rendering the processed residues virtually zinc- and lead-free raw materials that may either be used internally (e.g., feeding processed BF sludge and EAF dust back into the respective furnaces) or externally (e.g., for cement production). Clausthal-Zellerfeld GDMB 2019 Proceedings, European Metallurgical Conference 2019 3 978-3-940276-89-6 European Metallurgical Conference 2019 Düsseldorf, Germany 23.06.2019 26.06.2019 1267 1282 2019-07-02 OPUS4-48363 Beitrag zu einem Tagungsband Taube, Mareike Carolin; Adam, Christian; Adamczyk, Burkart; Beckmann, T.; Reuter, M.; Stelter, M. Influence of carbon feeding on a pyrometallurgical tantalum and niobium recycling process and the formation of carbides An existing pyrometallurgical process for tantalum and niobium recovery, mainly from low grade pyrometallurgical residues, was investigated. Series of melting experiments were carried out in a pilot-scale electric arc furnace to study how the amount, the grain size and the way of feeding affect the activity of carbon as a reducing agent. During the pyrometallurgical treatment refractory metals such as tantalum and niobium are reduced to their carbide form and enriched in the molten iron-based metal phase. The cooled down slag and metal phase were analysed to investigate thermodynamic and kinetic conditions of the carbide formation. FACT Sage simulations were also used to investigate the material system in state of thermodynamic equilibrium. Results show that mass transfer and kinetics may play an important role if compared to equilibrium analyses using FACT Sage. Clausthal-Zellerfeld GDMB Verlag GmbH GDMB Gesellschaft der Metallurgen und Bergleute e. V. 2019 Proceedings / EMC 2019, European Metallurgical Conference 1 978-3-940276-87-2 Euopean Metallurgical Conference (EMC) 2019 Düsseldorf, Germany 23.06.2019 26.06.2019 371 386 2019-07-03 OPUS4-48364 Vortrag Hamann, Christopher Thermochemical treatment of waste products from iron and steel production This presentation summarizes the development of a novel thermochemical process for recycling of zinc and lead-bearing wastes (blast furnace sludge and electric arc furnace dust) that accumulate during iron and steel production. 2019 European Metallurgical Conference 2019 Düsseldorf, Germany 23.06.2019 26.06.2019 2019-07-03 OPUS4-48351 Vortrag Taube, Mareike Carolin Influence of carbon feeding on a pyrometallurgical Ta and Nb recycling process and the formation of carbides An existing pyrometallurgical process for tantalum and niobium recovery, mainly from low grade pyrometallurgical residues, was investigated. Series of melting experiments were carried out in a pilot-scale electric arc furnace to study how the amount, the grain size and the way of feeding affect the activity of carbon as a reducing agent. During the pyrometallurgical treatment refractory metals such as tantalum and niobium are reduced to their carbide form and enriched in the molten iron-based metal phase. The cooled down slag and metal phase were analysed to investigate thermodynamic and kinetic conditions of the carbide formation. FACT Sage simulations were also used to investigate the material system in state of thermodynamic equilibrium. Results show that mass transfer and kinetics may play an important role if compared to equilibrium analyses using FACT Sage. 2019 Euopean Metallurgical Conference (EMC) 2019 Düsseldorf, Germany 23.06.2019 26.06.2019 2019-07-02