Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-55088 Vortrag Herzel, Hannes; Adam, Christian P-Rückgewinnung aus Klärschlammasche - AshDec® Verfahren Klärschlammaschen können eine hohe Phosphatkonzentration aufweisen und stellen damit einen geeigneten Sekundärrohstoff für die Produktion von Phosphatdüngemitteln dar. Bisher wird dieses Potential der Klärschlammaschen für die Phosphor-Rückgewinnung jedoch kaum genutzt, da die in den Aschen enthaltenen Phosphate für Pflanzen kaum verfügbar und die Aschen teilweise mit toxischen Schwermetallen belastet sind. Im AshDec®-Verfahren wird die Klärschlammaschen im Drehrohrofen im Temperaturbereich 800-1000°C unter Zugabe von Alkali-Additiven (bsp. Na2CO3) thermochemisch behandelt, um ein wirksames und schadstoffarmes Phosphatdüngemittel herzustellen. Aktuell bereitet die Firma Emter GmbH den Bau der ersten großtechnischen AshDec®-Anlage mit einer Kapazität von 30.000 Jahrestonnen Klärschlammasche am Standort ihrer Klärschlammverbrennungsanlage (Altenstadt / Oberbayern) vor. Die erste Ausbaustufe dieser Anlage wird durch das BMBF-Projekt R-Rhenania im Rahmen der Förderinitiative RePhoR begleitet. 2022 2. Thüringer Klärschlammkommunalkonferenz Thüringer Ministerium für Umwelt, Energie und Naturschutz 21.06.2022 21.06.2022 2022-06-22 OPUS4-54724 Dissertation Herzel, Hannes Phase reaction during thermochemical treatment of sewage sludge and biomass ashes with alkali compounds to increase nutrient plant availability Das Element Phosphor ist für Pflanzen, Tiere und Menschen essenziell. Um die Phosphorversorgung für Pflanzen in der Landwirtschaft zu gewährleisten, werden Phosphordünger eingesetzt. Die Nährstoffe werden hauptsächlich durch Wirtschaftsdünger (Gülle, Jauche, Stallmist) zurückgeführt. Zusätzlich werden in der konventionellen Landwirtschaft mineralische Phosphordünger eingesetzt, die vorwiegend aus dem fossilen Rohstoff Phosphorit gewonnen werden. Um die Abhängigkeit von fossilen Rohstoffen zu reduzieren, sollen nährstoffhaltige Rest- und Abfallstoffe zur Phosphordünger aufbereitet werden. In Abwasserkläranlagen fällt phosphorreicher Klärschlamm als Abfallstoff an. Der größte Anteil des Klärschlammes wird in Steinkohlekraftwerken, Zementwerken oder in Monoklärschlammverbrennungsanlagen verbrannt. Die Klärschlammaschen aus den Monoverbrennungsanlagen enthalten bis zu 12 Gew.-% Phosphor und sind daher für die Düngerherstellung geeignet. Ein geeignetes Verfahren zur Aufbereitung der Klärschlammaschen ist die thermochemische Behandlung im Drehrohrofen. Mit dem sogenannten AshDec®-Prozess, kann ein Phosphordünger hergestellt werden. Aktuell wird eine großtechnische Anlage in Altenstadt (Bayern) geplant, die im Jahr 2023 den Betrieb aufnehmen soll. Der zentrale Bestandteil ist die Phasenumwandlung von schlecht pflanzenverfügbaren Phosphaten in der Klärschlammasche (vorwiegend das Calciumphosphat Whitlockit und Aluminiumphosphat) zu gut pflanzenverfügbaren Calciumalkaliphosphaten im Produkt. Um dies zu erzielen, werden die Aschen mit Natrium- und/oder Kalium-Verbindungen gemischt und einer thermochemischen Behandlung bei 800-1000 °C zugeführt. Um die Pflanzenverfügbarkeit und Düngewirkung von Phosphaten abschätzen zu können, ist die chemische Extraktionsmethode mit neutraler Ammoniumcitratlösung geeignet. In der Dissertation werden die (Phosphor-)Phasenreaktionen und die Prozessbedingungen des thermochemischen Verfahrens untersucht, um das Verfahren gezielt zu modifizieren und die Wirtschaftlichkeit zu steigern. Die Zielphasen der thermochemischen Behandlung sind die Calciumalkaliphosphate CaNaPO4 und CaKPO4, und deren Mischphasen Ca(Na,K)PO4, welche in der Publikation 3.1 synthetisiert wurden. Für diese Calciumalkaliphosphate wurden die thermodynamischen Daten der Standardbildungsenthalpie, Standardentropie, Wärmekapazität und die Wärmemenge der Phasenumwandlung bestimmt (Publikation 3.1). Bei der thermochemischen Behandlung von Klärschlammaschen wurden als Additive Natrium- und Kaliumsulfat bei verschiedenen Temperaturen getestet. Der Einsatz von Kaliumadditiven ist erwünscht, um den Marktwert des Produktes durch die Produktion eines Phosphor-Kalium-Düngers zu erhöhen. Zusätzlich wird eine möglichst geringe Prozesstemperatur angestrebt, bei der die erwünschten Calciumalkaliphosphate gebildet werden. In den Publikationen 3.2 und 3.3 wird gezeigt, dass für Klärschlammaschen eine komplette Phasenumwandlung zu Calciumnatriumphosphaten ab 875 °C in Laborversuchen (Korundtiegel) mit dem Additiv Natriumsulfat erzielt werden kann. Der Einsatz von Kaliumsulfat erforderte notwendige Reaktionstemperaturen von über 1100 °C. Diese unterschiedlichen Reaktionstemperaturen hängen mit den Schmelzpunkten von Natriumsulfat (890 °C) und Kaliumsulfat (1070 °C) zusammen. Um Kaliumsulfat in den Prozess bei niedrigen Temperaturen zu integrieren, wurden Natriumsulfat und Kaliumsulfat vor der Behandlung gemischt. Dies führte zu einer Schmelzpunkterniedrigung und resultierte in Reaktionstemperaturen zwischen 900 °C bis 1000 °C für die untersuchten Mischungen von Natrium- und Kaliumsulfat (Publikation 3.3). Die Zusammensetzung der Calciumalkaliphosphate Ca(Na,K)PO4 war anders als erwartet. Bei der Phasenanalytik stellte sich heraus, dass bei geringem und mittlerem Anteil von Kaliumsulfat im Alkali-Additiv nur Calciumnatriumphosphate mit sehr geringen Kaliumgehalten gebildet wurden. Erst bei einem hohen Anteil von Kaliumsulfat in der Mischung der Alkalisulfate konnten kaliumhaltige Calciumalkaliphosphate nachgewiesen werden (u.a. (Ca0.9Mg0.1)(Na0.6K0.4)PO4). Dieser geringere Einbau von Kalium in die Calciumalkaliphosphate hängt mit den zusätzlich stattfindenden Reaktionen zwischen den Alkalien und den Silikaten zusammen. Es ist bekannt, dass die zugegebenen Alkalisulfate zuerst mit Silikaten und anschließend mit den Phosphaten reagieren. Silikate bauen bevorzugt Kalium ein, deswegen konnten erst kaliumhaltige Phosphate gebildet werden, wenn die Reaktion mit den Silikaten abgeschlossen war. Dies führte zu einem geringeren Kaliumanteil in den gebildeten Phosphaten im Vergleich zum Kaliumanteil der verwendeten Alkaliadditive. Das in Silikaten gebundene Kalium ist wahrscheinlich schlecht für die Pflanzen verfügbar. Dies könnte den Einsatz der produzierten Phosphor-Kalium-Dünger einschränken. Der bevorzugte Kaliumeinbau in Silikaten konnte auch in Kalkulationen mit den thermodynamischen Daten aus der Publikation 3.1 gezeigt werden. Mittels Phasenanalytik vor und nach der chemischen Extraktion, konnte die Zugehörigkeit zu verschiedenen Modifikationen der Calciumalkaliphosphaten sicher bestimmt werden und eine ungefähre Zusammensetzung dieser Calciumalkaliphosphate abgeschätzt werden. So konnte nachgewiesen werden, dass die Modifikation vom CaNaPO4 ungefähr 10 % Magnesium einbauen kann. Wenn mehr Magnesium eingebaut wird, bildet sich die Phase (Ca,Mg)NaPO4, die eine vergleichbare Struktur wie die bekannte Phase (Ca0.72Mg0.28)NaPO4 aufweist. Dieses magnesiumreiche Calciumnatriumphosphat entstand vermutlich, wenn entweder erhöhte Anteile an Kalium eingebaut wurden (Ca0.8Mg0.2)(Na0.85K0.15)PO4 (Publikation 3.3) oder die Phasenumwandlung vom Calciumphosphat Whitlockit zum Calciumalkaliphosphat CaNaPO4 noch nicht abgeschlossen war (Publikation 3.2). Wenn mehr Kalium eingebaut wird, dann entsteht eine Phase (u.a. (Ca0.9Mg0.1)(Na0.6K0.4)PO4) ähnlich zu den Mischphasen aus der Publikation 3.1. In den Publikationen 3.4 und 3.5 wurden keine Klärschlammaschen untersucht, sondern Biokohlen aus Modellklärschlämmen (Publikation 3.5) und Biomasseaschen (Publikation 3.4) aus der Vergasung oder Verbrennung einer Mischung aus Zuckerrohrbagasse und Hühnertrockenkot. Die thermochemischen Produkte der Biokohlen bzw. Biomasseaschen enthielten das gewünschte CaNaPO4 und hatten eine hohe Düngewirkung in Pflanzenwachstumsversuchen mit Sojapflanzen bzw. Gräsern. Jena 2020 1 186 2022-05-02 OPUS4-54727 Vortrag Herzel, Hannes Thermochemical P recycling from ash by AshDec ® process Klärschlammaschen können eine hohe Phosphatkonzentration aufweisen und stellen damit einen geeigneten Sekundärrohstoff für die Produktion von Phosphatdüngemitteln dar. Bisher wird dieses Potential der Klärschlammaschen für die Phosphor-Rückgewinnung jedoch kaum genutzt, da die in den Aschen enthaltenen Phosphate für Pflanzen kaum verfügbar und die Aschen teilweise mit toxischen Schwermetallen belastet sind. Im AshDec®-Verfahren wird die Klärschlammaschen im Drehrohrofen im Temperaturbereich 800-1000°C unter Zugabe von Alkali-Additiven (bsp. Na2CO3) thermochemisch behandelt, um ein wirksames und schadstoffarmes Phosphatdüngemittel herzustellen. Aktuell bereitet die Firma Emter GmbH den Bau der ersten großtechnischen AshDec®-Anlage mit einer Kapazität von 30.000 Jahrestonnen Klärschlammasche am Standort ihrer Klärschlammverbrennungsanlage (Altenstadt / Oberbayern) vor. Die erste Ausbaustufe dieser Anlage wird durch das BMBF-Projekt R-Rhenania im Rahmen der Förderinitiative RePhoR begleitet. 2022 Wastewater, Water and Resource Recovery (Workshop) Online meeting 11.04.2022 11.04.2022 2022-05-02 OPUS4-54325 Vortrag Herzel, Hannes Thermochemische Behandlung von Klärschlammaschen - Phosphorrückgewinnung mit dem AshDec Prozess Klärschlammaschen können eine hohe Phosphatkonzentration aufweisen und stellen damit einen geeigneten Sekundärrohstoff für die Produktion von Phosphatdüngemitteln dar. Bisher wird dieses Potential der Klärschlammaschen für die Phosphor-Rückgewinnung jedoch kaum genutzt, da die in den Aschen enthaltenen Phosphate für Pflanzen kaum verfügbar und die Aschen teilweise mit toxischen Schwermetallen belastet sind. Im AshDec®-Verfahren wird die Klärschlammaschen im Drehrohrofen im Temperaturbereich 800-1000°C unter Zugabe von Alkali-Additiven (bsp. Na2CO3) thermochemisch behandelt, um ein wirksames und schadstoffarmes Phosphatdüngemittel herzustellen. Aktuell bereitet die Firma Emter GmbH den Bau der ersten großtechnischen AshDec®-Anlage mit einer Kapazität von 30.000 Jahrestonnen Klärschlammasche am Standort ihrer Klärschlammverbrennungsanlage (Altenstadt / Oberbayern) vor. Die erste Ausbaustufe dieser Anlage wird durch das BMBF-Projekt R-Rhenania im Rahmen der Förderinitiative RePhoR begleitet. 2021 VDI.TECHNIK.TALK.ONLINE Online meeting 11.11.2021 11.11.2021 2022-02-14 OPUS4-53755 Zeitschriftenartikel Steckenmesser, D.; Vogel, Christian; Herzel, Hannes; Félix, R.; Adam, Christian; Steffens, D. Thermal treatment of sewage sludge for phosphorus fertilizer production: a model experiment Phosphorus (P) resource availability and quality is declining and recycling P-fertilizers from waste materials are becoming increasingly important. One important secondary P resource is sewage sludge (SSL) where P is often bound as aluminum phosphate (Al-P), iron phosphate (Fe-P) and polyphosphate (poly-P), respectively. Thermal treatment in different ways is a promising way in P recycling to produce highly plant-available P-fertilizers. To investigate mechanisms behind transformation of hardly available P-species toward plant-available P forms we treated a model SSL containing different kinds of defined P sources by low-temperature conversion (LTC) at 500 °C and subsequent thermochemical treatment of the LTC product with Na additives (TCT) at 950 °C, respectively. Pot experiments with ryegrass were carried out to determine the plant availability of P of the different treatments. The poly-P (here pyrophosphates) based fertilizers had a very high plant availability after both thermal treatments. During LTC treatment the plant availability of the Fe-P and Al-P variants increased because of the Formation of Fe(II) phosphates and/or pyro-/polyphosphates. Especially the formation of Al-polyphosphate shows a high plant availability. The subsequent TCT further increased strongly the plant availability of the Fe-P variants because of the formation of highly plant-available CaNaPO4. Thus, a direct TCT without prior LTC probably also produce CaNaPO4 and is recommended for Fe-P based SSL. However, a molar Ca/P ratio of � 1 in the fertilizer is favorable for CaNaPO4 formation. Thus, the knowledge on the source of primary P in SSL is essential for choosing the accurate thermal treatment method to produce highly plant-available P-fertilizers from SSL. Taylor & Francis Online 2021 Journal of Plant Nutrition 45 8 1123 1133 10.1080/01904167.2021.1994595 2021-11-17 OPUS4-53627 Zeitschriftenartikel Herzel, Hannes; Aydin, Zeynep; Adam, Christian Crystalline phase analysis and phosphorus availability after thermochemical treatment of sewage sludge ash with sodium and potassium sulfates for fertilizer production Phosphorus rich sewage sludge ash is a promising source to produce phosphorus recycling fertilizer. However, the low plant availability of phosphorus in these ashes makes a treatment necessary. A thermochemical treatment (800-1000 °C) with alkali additives transforms poorly plant available phosphorus phases to highly plant available calcium alkali Phosphates (Ca,Mg)(Na,K)PO4. In this study, we investigate the use of K2SO4 as additive to produce a phosphorus potassium fertilizer in laboratory-scale experiments (crucible). Pure K2SO4 is not suitable as high reaction temperatures are required due to the high melting point of K2SO4. To overcome this barrier, we carried out series of experiments with mixtures of K2SO4 and Na2SO4 resulting in a lower economically feasible reaction temperature (900-1000 °C). In this way, the produced phosphorus potassium fertilizers (8.4 wt.% K, 7.6 wt.% P) was highly plant available for phosphorus indicated by complete extractable phosphorus in neutral ammonium citrate solution. The added potassium is, in contrast to sodium, preferably incorporated into silicates instead of phosphorus phases. Thus, the highly extractable phase (Ca,Mg)(Na,K)PO4 in the thermochemical products contain less potassium than expected. This preferred incorporation is confirmed by a pilot-scale trial (rotary kiln) and thermodynamic calculation. Springer 2021 Journal of Material Cycles and Waste Management 23 2242 2254 urn:nbn:de:kobv:b43-536276 10.1007/s10163-021-01288-3 https://creativecommons.org/licenses/by/4.0/deed.de 2021-10-27 OPUS4-44481 Zeitschriftenartikel Huber, F.; Herzel, Hannes; Adam, Christian; Mallow, O.; Blasenbauer, D.; Fellner, J. Combined disc pelletisation and thermal treatment of MSWI fly ash An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450°C to 1050°C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450°C, thermally treated MSWI fly ash pellets can be classified as nonhazardous waste. However, temperatures of at least 650°C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850°C, 950°C or even 1050°C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in the secondary fly ash. This metal enriched secondary fly ash might represent a potential raw material for metal recovery (e.g. via acidic leaching). Due to the high content of total dissolved solids observed in the leachate of thermally treated MSWI fly ash pellets, a wet extraction procedure is suggested to enable its safe disposal at non-hazardous waste landfills. Rotterdam Elsevier Ltd. 2018 Waste Management 73 381 391 10.1016/j.wasman.2017.12.020 2018-03-19 OPUS4-51152 Zeitschriftenartikel Vogel, Christian; Helfenstein, J.; Massey, M.; Sekine, R.; Kretzschmar, R.; Beiping, L.; Peter, T.; Chadwick, O.; Tamburini, F.; Rivard, C.; Herzel, Hannes; Adam, Christian; Pradas del Real, A.; Castillo-Michel, H.; Zuin, L.; Wang, D.; Félix, R.; Lassalle-Kaiser, B.; Frossard, E. Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic Gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to co-location with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. Amsterdam Elsevier 2021 Geoderma 381 114681-1 114681-11 urn:nbn:de:kobv:b43-511522 10.1016/j.geoderma.2020.114681 https://creativecommons.org/licenses/by/4.0/deed.de 2020-09-04 OPUS4-50973 Zeitschriftenartikel Herzel, Hannes; Dombinov, V.; Vogel, Christian; Willbold, S.; Levandowski, G. V.; Meiller, M.; Müller, F.; Zang, J. W.; da Fonseca-Zang, W. A.; Jablonowski, N. D.; Schrey, S. D.; Adam, Christian Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films (DGT), and X-ray Diffraction Analysis (XRD) The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives (Na2SO4 and K2SO4) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction . We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaPO4. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)PO4 as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash. MDPI 2020 agronomy 10 895 6 urn:nbn:de:kobv:b43-509735 10.3390/agronomy10060895 https://creativecommons.org/licenses/by/4.0/deed.de 2020-07-06 OPUS4-50764 Zeitschriftenartikel Herzel, Hannes; Grevel, K.-D.; Emmerling, Franziska; Dachs, E.; Benisek, A.; Adam, Christian; Majzlan, J. Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. Springer 2020 Journal of Materials Science 55 8477 8490 urn:nbn:de:kobv:b43-507640 10.1007/s10853-020-04615-5 2020-05-13