Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-59694 Posterpräsentation Horn, Wolfgang; Richter, Matthias; Wilke, Olaf Volatile organic compounds from building products - Results from seven proficiency tests with emission test chambers conducted between 2008 and 2021 Emission testing of volatile organic compounds (VOC) from materials and products is commonly based on emission test chamber measurements. To ensure the comparability of results from different testing laboratories their measurement performance must be verified. For this purpose, Bundesanstalt für Materialforschung und -prüfung (BAM) organizes an international proficiency test every two years using well-characterised test materials (one sealant, one furniture board and four times a lacquer) with defined VOC emissions. The materials fulfilled the requirements of homogeneity, reproducibility, and stability. Altogether, 41 VOCs were included of which 37 gave test chamber air concentrations between 10 and 98 µg/m³. This is the typical concentration range to be expected and to be quantified when performing chamber tests. Four compounds had higher concentrations between 250 and 1105 µg/m³. The relative standard deviations (RSD) of BAM proficiency tests since 2008 are compared and the improvement of the comparability of the emission chamber testing is shown by the decrease of the mean RSD down to 23% in 2021. In contrast, the first large European interlaboratory comparison in 1999 showed a mean RSD of 51%. 2023 Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine Windsor, United Kingdom 25.09.2023 28.09.2023 2024-03-20 OPUS4-56039 Posterpräsentation Musyanovych, A.; Grimmer, Christoph; Sadak, A. E.; Heßling, L.; Bilsel, M.; Horn, Wolfgang; Richter, Matthias Polymeric Capsules with VOCs for Controlled Emission Micro-(nano-)encapsulation technology involves building of a barrier between the core and the environment and offers a number of benefits to preserve the functional and physicochemical properties of core material. Tremendous progress has been made in synthesizing well-defined capsules to achieve desired properties such as particle size, chemical composition, and controlled release of the payload. Encapsulation of volatile organic compounds (VOCs) that could evaporate with a defined rate is of immense interest for application in emission reference materials (ERM). These are urgently needed for quality assurance and quality control purposes (QA/QC) required by test standards for the determination of chemical emissions of construction and other materials for interior use. As such ERMs are hardly available on the market, the EU-funded EMPIR project MetrIAQ [1] was started to fill this gap by developing a material with temporally constant emission of VOCs typically found in indoor air. Different capsules in a size range between 5 and 50 μm were synthesized through an interfacial polyaddition/polycondensation reaction in direct (water-in-oil) system. As VOC several types of hydrophobic liquid materials were used. After synthesis, the morphology and physicochemical properties of capsules were characterized by electron microscopy, FTIR and DSC/TGA. An encapsulation efficiency up to 90% could be reached. The emission kinetic of volatile agents was studied in emission test chambers at 23 °C and 50% RH for 14 days. First results indicate that variation of the cross-linking grade of the shell material is one important parameter to adjust the desired emission rate. The overall aim is to achieve a consistent emission profile that decreases by less than 10 % over a target period of at least 14 days. 2022 36th European Colloid & Interface Society Conference Chania, Crete, Greece 04.09.2022 09.09.2022 2022-10-19