Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-59674 Vortrag Rhode, Michael Repair welding of pressurized in-service hydrogen pipelines - A review on current challenges and strategies As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called "European Hydrogen backbone". As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For natural gas (NG) pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and "stoppling" (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn't possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that "a hydrogen hot-tap shall not be considered a routine procedure". This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical proper-ties, commonly referred to as "hydrogen embrittlement" it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydro-gen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding welded joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material "history" needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. The focus hereby lies on possible methods of material testing and modeling. Its current difficulties, limits and possible solution will be discussed. 2024 IIW Intermediate Meeting, Com. II-A Incheon, Republic of Korea 12.03.2024 14.03.2024 2024-03-20 OPUS4-59673 Vortrag Rhode, Michael Combined effect of heating rate and restraint condition on stress relief cracking susceptibility during PWHT of thick-walled Cr-Mo-V steel submerged arc welded joints Contemporary steels creep-resistant steels like the 13CrMoV9-10 are used as thick plates e.g., for applications in hydrocrackers. The large plate thickness requires high efficiency welding processes like submerged arc welding (SAW) and a mandatory post weld heat treatment (PWHT). The PWHT-parameters stem from a combination of empirical knowledge and traditional experiments on free shrinking (FS) welds. In that connection, the formation of so-called stress-relief cracking (SRC) must be anticipated. The SRC susceptibility of a welded component is a complex combination and interaction of com-ponent specific, thermal, and metallurgical factors. Many of which have to date not been conclusively researched. For example, it is well known that SRCs develop during PWHT due to formation and growth of carbides on prior austenite grain boundaries, resulting in a significant hardness increase (secondary hardening) and toughness decrease. This leads to a high SRC susceptibility of the coarse grain heat-affected zone (CGHAZ) of the last weld bead during PWHT. This is intensified in case of high residual stresses from the component-specific, structurally induced stiffness. In combination with multi-layer welding this leads to a multiaxial stress distribution. Nonetheless, the combined effect of PWHT and high-residual stresses on the SRC formation is merely unknown. For that reason, this study presents the effect of different heating rates in conjunction with a certain component stiffness. For that reason, SAW joints of 13CrMoV9-10 steel were investigated under FS and defined external restraint condition. 2024 IIW Intermediate Meeting, Com. II-A Incheon, Republic of Korea 12.03.2024 14.03.2024 2024-03-20 OPUS4-59675 Vortrag Rhode, Michael Evaluation of local strain behavior of cross-weld tensile specimens of micro-alloyed high-strength steels by digital image correlation Microalloying elements such as Nb and Ti play a decisive function in achieving the desired mechanical strength of quenched and tempered, high-strength fine-grain structural steels with a nominal yield strength ≥ 690 MPa. The current specifications for the chemical composition only provide manufacturers with upper limits. However, even minor deviations in the alloy concept can have a significant impact on the mechanical properties. Consequently, accurate prediction of weldability and the integrity of welded joints becomes difficult or even impossible due to differences in composition and the resulting microstructures. Undesirable consequences include a possible softening of the heat-affected zone (HAZ) or, conversely, hardening effects. In view of these challenges, various microalloying strategies with different Ti and Nb contents are being systematically investigated for the first time using specially developed laboratory casting alloys. Each alloying route is based on the common S690QL, maintaining both the chemical composition and the heat treatment parameters. To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the heat-affected zone (HAZ) that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using transverse tensile specimens. Digital image correlation (DIC) is used to image changes in local strains in different HAZ regions in situ. Using a specially developed mirror system, the local strains of the microstructure zones on the top and bottom of the weld are recorded simultaneously. This makes it possible to analyse how the weld seam geometry (e.g., V-seam) influences the strain gradients. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the fracture constriction, the fracture position, and the overall fracture behavior. 2024 IIW Intermediate Meeting, Com. II-A Incheon, Republic of Korea 12.03.2024 14.03.2024 2024-03-20 OPUS4-59676 Vortrag Rhode, Michael; Kannengiesser, Thomas Call for interested people to contribute to series of comprehensive papers on welding and joining of components for sustainable energy systems Joining and welding technologies are of high importance for the manufacturing of components and parts used in sustainable energy generation, conversion, and transport. In that connection, offshore and on-shore installed wind turbines are of high interest for the generation of electrical energy as well as photo-voltaic systems (solar cells). The electricity can be either directly transported or conversed via power-to-gas e.g., to hydrogen. In that scope, electrolyzer up to MW-range are of interest as well as the conver-sion back to electricity via fuel cells. In addition, hydrogen is a key element of the decarburization of in-dustries as well as the mobility sector encompassing sea, air and land transportation driven by hydrogen or its derivates. Well-known examples cover the direct reduction of iron ore to replace the conventional blast furnace process up to gas turbines or fuel cells for home-end use. All mentioned technologies re-quire reliable components, which are to a high extend dependent on joining and especially welding pro-cessing of materials. Especially, the (petro-) chemical industry has many years of experience with both materials used in hydrogen applications. The challenge is e.g., the transition to mass production of sys-tem components of electrolyzers/fuel cells and for distribution grids. At this point, the scalability of cur-rently applied joining processes often limits the economic efficiency, whereas especially laser welding or additive manufacturing will be of high interest. In that connection, it is very important to provide answers by joint research of universities, institutes, and industrial companies. Very often, solutions are already available and "just" have to be investigated and adapted for the new application, like repair welding of NG pipelines. For that reason, we want to set up a series of comprehensive papers with the aforementioned title. The idea is to get an in-depth but manageable overview of the importance of joining technologies in sustaina-ble energy generation, conversion, and transport encompassing current processes, limitations, and fur-ther perspectives. In that connection, the additive manufacturing is gaining more and more attention. If applicable, current challenges in the adaption or creation of new standards/regulations shall be addressed. 2024 IIW Intermediate Meeting, Com. II-A Incheon, Republic of Korea 12.03.2024 14.03.2024 2024-03-20 OPUS4-59758 Vortrag Rhode, Michael „H2-SuD" Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen, Statusbericht - März 2024 Die Umstellung der Wirtschaft auf wasserstoffbasierte Energieversorgung soll in Deutschland vor allem auf Basis der Umstellung des bestehenden Erdgasnetzes erfolgen. ­Dabei sollen ca. 90 % dieser Fernleitungsnetze auf dem bestehenden Erdgasnetz basieren. Die Beimischung von Wasserstoff zum Erdgas als auch der reine Wasserstofftransport werfen jedoch die Frage auf, ob und wie kompatibel die eingesetzten Materialien sind. Die Reparatur- und Erweiterungsfähigkeit von Erdgas-Bestandspipelines ist zu klären, wenn diese auf Wasserstoff umgestellt werden. Denn gerade Gashochdruckleitungen müssen regelmäßig gewartet und erweitert werden, um einen ordnungsgemäßen Betrieb sicherzustellen. Insbesondere das Schweißen unter Betriebsdruck bzw. an in Betrieb befindlichen Gasleitungen ist eine der wichtigsten Instandhaltungstechnologien, unabhängig von der Zusammensetzung des geförderten Mediums. Es ist daher dringend notwendig, eine geeignete Teststrategie zu erarbeiten, welche die nötigen Vorrausetzungen für sicheres Schweißen an in Betrieb befindlichen Druckwasserstoffleitungen schafft und entsprechende Kriterien für die Praxis liefert. Im Projekt H2-SuD - Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen - soll geklärt werden, ob und wie stark mit einer Eigenschaftsdegradation geschweißter Rohrstähle in Gasnetzen in Folge einer Wasserstoffaufnahme zu rechnen ist. Die Präsentation gibt dazu einen kurzen Überblick über den aktuellen Status des Projektes. Die Förderung erfolgt im Rahmen der DVGW-Innovationsprogammes Wasserstoff (Nr. G 202131). 2024 DVGW - Arbeitsgruppentreffen Berlin, Germany 19.03.2024 19.03.2024 2024-03-28 OPUS4-57076 Vortrag Rhode, Michael Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken" von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. 2023 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" Munich, Germany 28.02.2023 03.03.2023 2023-03-03 OPUS4-57040 Vortrag Rhode, Michael Fügetechnik in Wasserstofftechnologien: Erzeugung, Transport, Speicherung, Nutzung Der Vortrag gibt einen kurzen Überblick über die Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige FuE-Bereiche. Fügetechnologien haben dabei wesentliche Bedeutung für die Umsetzung von technischen Komponenten der Wasserstofftechnologien. Forschungsschwerpunkte ergeben sich insbesondere für die Erzeugung und den Transport des Wasserstoffs. 2023 Vortragsreihe des DVS Bezirksverbandes Berlin Berlin, Germany 22.02.2023 22.02.2023 2023-02-24 OPUS4-56837 Vortrag Schroeder, Nina; Rhode, Michael; Kannengießer, Thomas Ausscheidungsverhalten und Eigenschaften der schweißbedingten Wärmeeinflusszonen hochfester Stähle in Abhängigkeit der Mikrolegierungsroute Für eine signifikante Festigkeitssteigerung von vergüteten, hochfesten Feinkornbaustäh-len mit einer Nominalstreckgrenze ≥ 690 MPa, ist die Zugabe von Mikrolegierungselementen, wie Nb und Ti, unerlässlich. Die Normvorgaben zur chemischen Zusammensetzung dieser Stähle (bspw. in DIN EN 10025-6) geben zur Erzielung der vorgeschriebenen Eigenschaften dabei oft nur Grenzgehalte für die Hersteller vor. Die Wirkung der Legierungselemente in der WEZ ist teilweise komplett konträr. Somit wird eine adäquate Vorhersage der Chargenabhängigkeit hinsichtlich der Schweißeignung und des Tragver-haltens der Schweißverbindung erschwert. Neben metallographischen Untersuchungen einzelner WEZ-Bereiche wurden unter Variation der chemischen Zusammensetzung, thermodynamische Phasenberech-nungen mittels ThermoCalc durchgeführt. Hierdurch wird ein Verständnis zur Phasentransformation, Aus-scheidungswachstum und -auflösung während des Schweißens in Abhängigkeit von Temperatur und Ab-kühlbedingungen geschaffen. 2023 Forschungsseminar BAM, BMDK Magdeburg, Germany 05.12.2022 2023-01-17 OPUS4-58674 Vortrag Rhode, Michael Joining technologies for hydrogen components: current need and future perspectives The study provides an overview of the aspects of joining and its importance in manufacturing of components for the more and more important field of hydrogen as key factor for the energy transition to a decarburized future. To this end, the fundamentals of the technology fields of hydrogen production, storage, transport, and application are presented and the state of the art of manufacturing of components for hydrogen technologies by joining is summarized. Based on representative examples from practice, research and development, the importance of joining technology in hydrogen technologies is clearly highlighted and perspectives for the future are derived. From a macroeconomic perspective, the focal points, or trends of joining technologies here include: the erection of new infrastructure for hydrogen storage and transport, and the safe conversion of existing natural gas infrastructure and its challenges for welded materials. In addition, we show the problems that are anticipated with in-service repair welding of hydrogen pipelines. In hydrogen applications, the efficient mass production of fuel cells and electrolysers is becoming increasingly important. For that reason, the importance of additive manufacturing is highlighted. Finally, the challenges for technical regulations and standardization by using hydrogen are shown. 2023 AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 Braga, Portugal 19.10.2023 20.10.2023 2023-10-26 OPUS4-58675 Vortrag Rhode, Michael Diffusion in high-pressure hydrogen charged multi-principal element alloys CoCrFeMnNi and CoCrNi vs. AISI 316L Multi-principal element alloys (MPEAs) are innovative materials that have attracted extensive research attention within the last decade. MPEAs are characterized by a solid solution of equiatomic metallic elements. Depending on the number of elements, they are also referred as high entropy alloys (HEAs with n ≥ 4 elements like CoCrFeMnNi) and medium-entropy alloys (MEA with n = 3 elements CoCrNi). Depending on the alloy concept, MPEAs show exceptional properties in terms of mechanical performance or corrosion resistance at extreme environments. In that connection, hydrogen and its challenges for the most metallic materials gets more and more important. MPEAs are candidate materials for the substitution of conventional materials like austenitic stainless steels e.g., at very high-pressure up to 1000 bar. Those pressures are typically reached in valves or compressors for refueling of tanks with operational pressure of 700 bar. So far, the susceptibility of HEA/MEAs to hydrogen assisted cracking (if any) and the especially the underlying hydrogen uptake and diffusion was not within the scientific scope and not investigated in detail yet. For that reason, we focused on the hydrogen absorption the characterization of the hydrogen diffusion and trapping at elevated temperatures in a CoCrFeMnNi-HEA (each element with 20 at.-%) and CoCrNi-MEA, each element with 33.3 at.-%). As reference grade, the commercially available austenitic stainless steel AISI 316L was investigated. High-pressure hydrogen charging was conducted at different pressures in autoclave environment with maximum value of 1,000 bar. Thermal desorption analysis (TDA) via carrier gas hot extraction with coupled mass spectrometry was used with a max. heating rate of 0.5 K/s up to 650 °C. The measured desorption spectra of the different samples were deconvoluted into a defined number of individual peaks. The individually calculated peak temperatures allowed the definition of activation energies for predominant trap sites in the respective materials as well as the percentage share of the totally absorbed hydrogen concentration. The results present for the first time the complex interaction of both MPEAs and high-pressure hydrogen charging. A deconvolution of four peaks was selected and a main desorption peak was identified the dominant hydrogen trap containing the biggest share of the absorbed hydrogen concentration. The chemical composition an austenitic phase of both MPEAs is responsible for delayed hydrogen diffusion and strong, but mostly reversible, trapping. The comparison with the 316L samples showed significantly higher activation energies in the MPEAs, whereas hydrogen was also trapped at very high extraction temperatures. The absorbed maximum hydrogen concentration at 1,000 bar was 130 ppm for the CoCrFeMnNi-HEA, 50 ppm for the CoCrNi-MEA and 80 ppm for the 316L. It is interesting that the CoCrFeMnNi-HEA has obviously a way higher trapping capability compared to the conventional austenitic 316L, which could be a major advantage in terms of resistance to hydrogen assisted cracking. 2023 47th MPA-Seminar Stuttgart, Germany 10.10.2023 11.10.2023 2023-10-26 OPUS4-58677 Vortrag Rhode, Michael Reliable hydrogen determination in metallic materials and their weld joints: Parameters and challenges In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. The majority of materials used to date are typically welded for component fabrication. In that context, steels are widely applied and can be prone to hydrogen embrittlement. This includes the classical delayed cold cracking during welding processing as well as embrittlement phenomena during operation. For the evaluation of any hydrogen effect on, for example, the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of welds, for example, according to ISO 3690, this is the isothermal carrier gas hot extraction (CGHE). CGHE is based on accelerated hydrogen degassing due to thermal activation of hydrogen at elevated temperatures. In addition to the pure quantification of hydrogen, thermal desorption analysis (TDA) with varied heating rates can be used to determine and evaluate the bonding state at microstructural defects in the material. For both techniques, experimental and measurement influences have to be considered, which have a great effect on the result. For CGHE, for example, ISO 3690 suggests different sample geometries as well as minimum extraction times. The present study summarizes results and experiences of numerous investigations with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding: the influence of the sample surface (polished/welded), measurement accuracies depending on the sample volume as well as the insufficient monitoring of the effect of the PI controller on the extraction temperature. In particular, a deviating extraction temperature to the set temperature, can significantly falsify the measurement results. Based on the results, methods are shown to quickly reach the desired extraction temperature without having to physically interfere with the measurement equipment. This serves to substantially improve the reliability of hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples for the selected heating procedure is advisable to exclude possible unwanted temperature influences already before the measurement. In addition (and way more important), the methods described can be transferred directly to industrial applications. 2023 47th MPA-Seminar Stuttgart, Germany 10.10.2023 11.10.2023 2023-10-26 OPUS4-58671 Vortrag Rhode, Michael Fügetechnik in Wasserstofftechnologien: Prozesse und Perspektiven Der Vortrag gibt einen tiefen Überblick über die Bedeutung der Füge- und Schweißtechnik in Wasserstofftechnologien. Dazu gliedert sich der Vortrag in die Komplexe H2-Erzeugung, Speicherung, Transport, Anwendung auf und gibt jeweils repräsentative Industriebeispiele für den heutigen Anwendungsstand. Insbesondere werden hier Fertigungstechnologien für Brennstoffzellen vorgestellt, sowie Herausforderungen beim Reparaturschweißen von Wasserstoffpipelines. Zeitgleich wird in einem eigenen Kapitel die Bedeutung der additiven Fertigung ebenso erläutert, wie die aktuellen und umfassenden Tätigkeiten auf dem Gebiet der Normung zu H2-Technologien. 2023 Vortragsreihe der VDI-Ortsgruppe Magdeburg Magdeburg, Germany 23.10.2023 23.10.2023 2023-10-26 OPUS4-57517 Vortrag Rhode, Michael Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen Die vorliegende Präsentation fasst die Ergebnisse von drei laufenden bzw. beendeten AiF/IGF-Projekten zusammen, die über die Forschungsvereinigung Stahlanwendung FOSTA e.V. an der BAM bearbeitet wurden zum Thema: Bewertung und Vermeidung von schweißverarbeitungsbedingten Rissen in hochfesten Baustählen. 2023 FOSTA Tagung: Hochfester Stahl im Stahl und Anlagenbau Essen, Germany 16.05.2023 17.05.2023 2023-05-22 OPUS4-58307 Vortrag Rhode, Michael Zuverlässige Wasserstoffbestimmung in Metallen und ihren Schweißverbindungen: Parameter, Einflüsse, Grenzen Im Zuge der wasserstoffbasierten Energiewirtschaft von morgen, kommt der Errichtung der dementsprechenden Infrastruktur die zentrale Rolle zu. Der überwiegende Teil bisher eingesetzter und meist geschweißter Werkstoffe, wie Stähle, kann unter bestimmten Bedingungen zur Wasserstoffversprödung neigen. Dies umfasst die klassische verzögerte Kaltrissbildung während der Schweißverarbeitung als auch Versprödungsphänomene während des Betriebs. Für die Bewertung eines jeden Wasserstoffeffektes auf bspw. die mechanischen Eigenschaften eines geschweißten metallischen Werkstoffes, muss der Wasserstoffgehalt präzise bestimmt werden, Im Fall von Schweißnähten ist die beispielsweise nach der ISO 3690, die klassische isotherme Trägergas-Heißextraktion (TGHE). Die TGHE basiert dabei auf der beschleunigten Wasserstoffentgasung aufgrund der thermischen Aktivierung des Wasserstoffs bei erhöhten Temperaturen. Neben der reinen Quantifizierung des Wasserstoffs, kann über die thermische Desorptionsanalyse (TDA) mit variierten Heizraten, der Bindungszustand an mikrostrukturellen Defekten im Material festgestellt und bewertet werden. Für beide Techniken sind experimentelle und messtechnische Einflüsse zu beachten, die großen Effekt auf das Ergebnis haben. Für die TGHE schlägt die ISO 3690 schlägt beispielswiese verschiedene Probengeometrien sowie Mindestextraktionszeiten vor. Die vorliegende Studie fasst Ergebnisse und Erfahrungen zahlreicher Untersuchungen an der Bundesanstalt für Materialforschung und -prüfung (BAM) mit unterschiedlichen Probentemperaturen und Geometrien (ISO 3690 Typ B und zylindrische TDA-Proben) zusammen hinsichtlich: Einfluss der Probenoberfläche (poliert/geschweißt), Messgenauigkeiten in Abhängigkeit des Probenvolumens sowie die unzureichende Überwachung des Effektes des PI-Reglers auf die Extraktionstemperatur. Insbesondere eine abweichende Extraktionstemperatur zur eingestellten Temperatur, kann die Messergebnisse wesentlich verfälschen. Basierend auf den Ergebnissen werden Methoden aufgezeigt, um schnell die gewünschte Extraktionstemperatur zu erreichen, ohne physisch in das Messequipment eingreifen zu müssen. Dies dient der wesentlichen Verbesserung der Zuverlässigkeit der Wasserstoffmessung durch erhöhte Signalstabilität und beschleunigte Wasserstoffdesorption. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die gewählte Heizprozedur angeraten, um mögliche unerwünschte Temperatureinflüsse bereits vor der Messung auszuschließen. Die beschriebenen Methoden können ohne großen Aufwand direkt in die industrielle Anwendung überführt werden. 2023 DVS Congress 2023 Essen, Germany 11.09.2023 14.09.2023 2023-09-19 OPUS4-57714 Vortrag Rhode, Michael Kurzvorstellung des DVGW-geförderten Projektes "H2SuD" - Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Gasleitungen Die Wasserstoffinfrastruktur ist eine zentraler Bestandteil der erfolgreichen Umsetzung der wasserstoffbasierten Energiewende. Dabei bilden Ferngasleitungen quasi das "Rückgrat" der Transportinfrastruktur großer Gasmengen. Dabei müssen unter Umständen Reparaturen an den Pipelines durchgeführt werden. Dabei ist in der Erdgasinfrastruktur das Schweißen an in Betrieb befindlichen (d.h. von Gas durchflossenen) Pipelines Stand der Technik. Es ist jedoch vollkommen offen, inwieweit diese Technik auf die reine Wasserstoffpipelines übertragbar sind. Hierzu leistet das Projekt H2SuD wichtige Beiträge zur Aufklärung des Einfluss eines Reparaturschweißprozesses auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2 Gasleitungen. 2023 Sitzung des Unterarbeitskreises / UAK 2.1.1 "Rohrleitungen" im Rahmen der Normungsroadmap Wasserstofftechnologien Online meeting 16.06.2023 16.06.2023 2023-06-20 OPUS4-57411 Vortrag Rhode, Michael Fügetechnik in Wasserstofftechnologien Ein aktueller Überblick Der Vortrag gibt einen kurzen Überblick über die Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Herausforderungen. Fügetechnologien, insbesondere die Schweißtechnik, haben dabei wesentliche Bedeutung für die Umsetzung von technischen Komponenten der Wasserstofftechnologien. Forschungsschwerpunkte ergeben sich insbesondere für die Erzeugung und den Transport des Wasserstoffs. 2023 Vortragsreihe des DVS Bezirksverbandes Mannheim-Ludwigshafen Online meeting 27.04.2023 2023-05-04 OPUS4-57222 Vortrag Rhode, Michael Welding (and joining) technologies for the hydrogen economy - a short overview This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. The current main issues and future perspectives are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Some remarks are given for standardization and regulations. 2023 Meeting of the European Welding Association (EWA), Executive Committee (EC) 1 Frankfurt am Main, Germany 22.03.2023 22.03.2023 2023-03-27 OPUS4-57977 Vortrag Rhode, Michael Large scale hydrogen assisted cracking test for thick walled SAW joints for offshore applications Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods or jackets. These components are typically submerged arc welded (SAW) high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicate the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam / layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with 22 passes and a seam length of 1,000 mm. Additional welded stiffeners simu-lated the effect of a high restraint, to stimulate critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of 48 h after welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modelling allowed the qualitative estimation of the hydrogen diffusion in the weld. A remarkable HAC occurrence was not identified and proves both, a certain resistance of the weld joint to HAC and the (questionable) duration of the MWT. 2023 IIW Annual Assembly, Meeting of Commission II-C Singapore 19.07.2023 19.07.2023 2023-07-25 OPUS4-57978 Vortrag Schroepfer, Dirk; Rhode, Michael Local mechanical properties of TIG dissimilar metal welded CoCrFeMnNi high-entropy alloy to austenitic steel AISI 304 Multiple principal element alloys (MPEA) encompass the well-known high entropy alloys (HEAs). MPEA/HEA represent a new class of materials consisting of at least three alloying elements, each containing 5 to 35 at.-%. This alloying concept thus differs fundamentally from conventional materials such as steel or nickel alloys. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. In particular, conflicting goals, such as the trade-off between strength and ductility in conventional steels, are overcome. In the last 20 years, however, the focus has been on material synthesis. With the increase in available material quantities, the focus is now on pro-cessing issues such as joining and welding processes. The weldability of MPEA has received very little atten-tion so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the appli-cation of these materials in combination with conventional materials. The present study presents, comprehen-sive experimental results on the weldability of MPEA-DMWs. For that purpose, a Co20Cr20Fe20Mn20Ni20 HEA in cold-rolled and heat-treated condition was joined by means of tungsten inert gas welding (TIG) with the austenitic Cr-Ni steel AISI 304. The DMWs resulted in interesting mechanical properties. They were obtained by instrumented tensile tests as well as the local deformation in the weld area by using digital image correlation (DIC) technique. A significant softening in the heat-affected zone (HAZ) of the MPEAs as well as a slightly reduced tensile strength with a significant decrease of the elongation at fracture were found. The experiments provided proof in principle of the weldability of the MPEAs for DMWs with conventional materials that ensure a corresponding capability for mechanical loading. This allows further considerations on the application of these innovative materials. 2023 IIW Annual Assembly, Meeting of Commission C-II Singapore 18.07.2023 18.07.2023 2023-07-25 OPUS4-57975 Vortrag Rhode, Michael Intended weld repair of in service hydrogen pipelines In the course of tomorrow's hydrogen-based energy transition, the construction of the corresponding infrastructure will play a central role. In that context, large diameter long-distance transmission pipelines for hydrogen will be the backbone in the European Union with service pressures from 70 to 90 bar (e.g., de-pending on national regulations). It is a major goal to repurposing the existing natural gas (NG) infrastructure despite the necessity of new pipelines. From that point of view repair welding or further welding of branch pipe etc. can be necessary during in-service, i.e., permanent flow of pressurized hydrogen. The reason is that a shut-down of large diameter pipelines is not easy or sometimes merely impossible. At the moment, it is entirely open if current repair welding procedures for NG pipe-lines can be transferred to pure hydrogen pipelines. For that reason, a collaborative project between BAM, DVGW (German Association for Gas and Water Professions) and a large number of gas grid operators, pipeline manufacturers and construction companies was initiated in 2023 to answer questions on: (1) How many hydrogen is additionally absorbed during the preheating and maintaining at interpass temperature under remaining operational pressures? (2) Is the hydrogen concentration sufficient to reach a critical condition? (3)Which material and weld microstructure are the most susceptible? (4) Is there a difference in the repair welding behavior of NG pipelines with materials in "used" condition? (5) Which welding parameters and joint dimensions must be ensured for safe repair welding? The final aim of this project is the publication of a recommended practice for repair welding of in-service hydrogen pipelines. For that reason, the present study gives an overview on: (A) current practice in repair welding of in-service pipelines and (b) plans for hydrogen pipelines and first results of international research projects. 2023 IIW Annual Assembly, Meeting of Commission XI Singapore 19.07.2023 19.07.2023 2023-07-25 OPUS4-57976 Vortrag Rhode, Michael Standardization and examples for R & D activities on hydrogen technologies with respect to testing procedures in Germany This contribution briefly summarizes the standardization activities in accordance with the "Nationale Roadmap Wasserstofftechnologien" and presents selected results on the activities in Germany with scope on hydrogen transport in pipelines. The talk was given during a panel discussion to set-up a steering committee for standardization for hydrogen pipelines and welding , coordinated by the International Institute of Welding. 2023 IIW Annual Assembly, Meeting of Commission XI Singapore 19.07.2023 2023-07-25 OPUS4-58220 Vortrag Rhode, Michael Hollow specimens as simplified approach for testing metallic materials under high pressure hydrogen development and utilization The hydrogen economy requires large-scale storage and transportation options like long-distance transmission pipelines. The applied materials (typically steels) must be carefully tested under different conditions (pressure, temperature, impact of impurities, etc.) for their suitability and service with hydrogen. In combination with mechanical load, as occurs in every gas network, hydrogen can induce degradation of the mechanical properties and promote finally resulting in embrittlement, i.e., the formation of cracks. The conventional testing procedures consist of autoclaves in which samples are strained under pressurized hydrogen. The test apparatus requires large amounts of hydrogen and thus a high level of safety and costs. In very specific cases, these tests might be replaced by simplified electrochemical charging. However, these test alternatives raise several questions regarding the equivalency of both testing scenarios. In the early 1980's the idea of a so-called hollow tensile sample raised and was reinitiated 2021 in ISO TC 164 by T. Ogata (NIMS, Japan) and further developed (e.g. by Fraunhofer IWM, Germany). The idea was: the sample itself represents the autoclave instead of charging a sample from outside. For that reason, a hole is drilled through the sample and the inner surface is pressurized by hydrogen gas during the mechanical testing. Indeed, this represents the main advantage as no expensive pressure-resistant autoclave equipment for large H-volumes is necessary, which significantly reduces the safety-related issues and thus the high costs. In the following, we show recent activities at BAM Berlin on adaption of the hollow-specimen technique for slow strain rate testing (SSRT). The current research activities are focussed on macroscopic influences like the sample geometry, minimum necessary dimensions, and microscopic influences e.g., on the surface by the processing method (drill hole quality and geometric precision) as well as the gas pressure effect (mechanical deformation of surface in different media). 2023 FEMS EUROMAT 2023 Frankfurt a. M., Germany 04.09.2023 07.09.2023 2023-09-13 OPUS4-58221 Vortrag Rhode, Michael Microalloying influence on precipitation behavior and mechanical properties of welded high strength structural steels Microalloying elements, such as Nb and Ti, are essential for the targeted mechanical strength of quenched and tempered, high-strength fine-grained structural steels with a nominal yield strength ≥ 690 MPa. Current specifications for chemical composition only provide upper limits for manufacturers. But even small deviations in the alloying route can have a drastic effect on the mechanical properties. Thus, an adequate prediction of the weldability and the integrity of the welded joint becomes difficult or even impossible due to the varying composition and, hence, the microstructures. Undesirable side effects are the possible softening of the heat-affected zone (HAZ) as well as the opposite effect of hardening. Against this background, different microalloying routes with varying Ti and Nb contents are systematically investigated for the first time on specially designed lab-cast alloys. The basis of each alloy route was the common S690QL in terms of both the chemical composition as well as the heat treatment. To investigate the weldability, three-layer welds were performed using metal active gas welding (MAG) and critical microstructural areas with high softening/hardening were identified. The scope was here on the identification of phase transformations during cooling and on the respective metallurgical precipitation behavior. Isothermal and non-isothermal phase calculations were performed using Thermo-Calc® and showed that the prediction of the non-equilibrium precipitation characteristics during welding is not trivial, especially for this relatively complex chemical composition. The mechanical properties of the welded joints were identified by both Charpy tests (toughness) and tensile tests (strain and strength). During the test, the local straining behavior of the welded joints, was identified using a digital image correlation (DIC) system, see Figure 1. Despite the generally good weldability of the materials, the results show a significant influence of the microalloying route as well as the welding heat input on the different precipitation kinetics. 2023 FEMS EUROMAT 2023 Frankfurt a. M., Germany 04.09.2023 07.09.2023 2023-09-12 OPUS4-58222 Vortrag Rhode, Michael Dissimilar metal TIG weld joints of multiple principal element alloys (MPEA) to austenitic steel 304 Multi-element alloys (MPEA - Multiple Principal Element Alloys) represent a new class of materials consisting of at least three alloying elements, each with 5 to 35 atomic %. This material class includes high-entropy alloys (HEA, with n ≥ 4 elements). The underlying alloying concept differs fundamentally from conventional materials such as the Fe-based steel. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. The aim is to identify highly innovative MPEA with individually adjustable properties for industrial applications. In the last 20 years, however, the focus has been on pure material synthesis. With the increase in available material quantities, the focus is on processing issues such as joining and welding processes. In that connection, the weldability of MPEAs has received very little attention so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the application of these materials if joint to conventional materials. This study presents selected experimental results on the weldability of MPEA-DMWs and the resulting microstructures. For this purpose, the equiatomic CoCrFeMnNi (HEA) was investigated in cold-rolled (CR) and heat-treated (HT) condition and joined by tungsten inert gas (TIG) welding to an austenitic stainless steel 304. The DMWs showed defect-free conditions (no lack of fusion, cracks and so on), whereas the cold-rolling increases the microhardness. The global mechanical properties were obtained by instrumented tensile tests of cross-weld samples and showed sufficient yield and tensile strength comparable to that of the individual base materials (BM). The local strain conditions were determined by digital image correlation and showed the highest local strains to occur in the intermixed weld metal. Indeed, the preferred fracture location of the cross-weld tensile samples was in the weld metal. Finally, the experiments proofed the weldability of the MPEAs to conventional 304. This enables targeted further considerations for example as structural materials. 2023 FEMS EUROMAT 2023 Frankfurt a. M., Germany 04.09.2023 07.09.2023 2023-09-13 OPUS4-58907 Vortrag Rhode, Michael Bauteilversuch zur Bewertung der wasserstoffunterstützten Rissanfälligkeit geschweißter, dickwandiger Offshore Gründungsstrukturen Offshore-Windenergieanlagen erfordern Gründungskonzepte aus unterpulver-(UP-)geschweißten Dickblechen (bspw. der Güte S420ML). Während der Schweißfertigung kann eine zeitverzögerte wasserstoffunterstützte Kaltrissbildung auftreten, deren Bewertung aufgrund der Bauteilgröße von Offshore-Strukturen sehr komplex ist. Deswegen wurde eine bauteilähnliche Geometrie (Mock-Up) entwickelt, um reale Steifigkeitsverhältnisse auf den Labormaßstab zu übertragen. Zusätzliche Versteifungen simulieren die Wirkung einer Einspannung bzw. Schrumpfbehinderung der Schweißnaht. Über die Verwendung von Schweißpulvern mit definierter Feuchte wurden zudem ein Extremszenario der Wasserstoffaufnahme simuliert. Entsprechend der vorgegebenen Mindestwartezeit für die ZfP von bis zu 48 h wurde die Schweißnaht zerstörungsfrei mit Phased-Array-Ultraschall-Prüfung (PAUT) geprüft und die Eigenspannungen über Röntgendiffraktometrie (XRD) bestimmt. Zusätzlich wurde die Wasserstoffverteilung in der Schweißverbindung numerisch simuliert. Außer zulässigen Defekten (wie Poren), wurde keine verzögerte Kaltrissbildung in den Mock-Ups festgestellt, was auf hohe Rissbeständigkeit hindeutet. 2023 Tagung Werkstoffprüfung 2023 Berlin, Germany 23.11.2023 24.11.2023 2023-11-28 OPUS4-59005 Vortrag Rhode, Michael Fügetechnik in Wasserstofftechnologien: Prozesse und Perspektiven Die Wasserstofftechnologien der näheren Zukunft erfordern sichere Komponenten. Die Füge- und Schweißtechnik ist hier von zentraler Bedeutung, insbesondere für die Transportinfrastruktur (wie Pipelines). Der vorliegende Vortrag gibt hierzu einen umfassenden Überblick, beginnend bei der Erzeugung, Speicherung über Transport und Nutzung. Zusätzlich wird die zunehmende Bedeutung der additiven Fertigung beleuchtet und ein kurzer Ausblick auf die aktuelle Normungsroadmap der Wasserstofftechnologien gegeben. 2023 Weiterbildung für Schweißaufsichtspersonen (a.d. SLV Halle) Halle (a.d. Saale), Germany 30.11.2023 30.11.2023 2023-12-05 OPUS4-56233 Vortrag Rhode, Michael Additive manufacturing for components in hydrogen technologies With the introduction of a hydrogen-based energy and national economy, safety-relevant components for hydrogen technologies are becoming increasingly important. Characteristic of hydrogen technologies are, for example, harsh environmental conditions such as cryogenic or high-pressure storage, corrosion issues in fuel cells and electrolyzers, turbines, and many more. Additive manufacturing of components is becoming increasingly important and irreplaceable for the production of complex technical systems. Using the case studies of burners for gas turbines and electrodes and membranes for polymer (PEMFC) and solid oxide (SOFC) fuel cells, this article shows the potential of additive manufacturing of components. At the same time, however, the challenge of considering divergent mechanical properties depending on the direction of assembly in a "hydrogen-compatible" manner is also highlighted. Finally, the challenges posed by additive manufacturing and hydrogen for materials testing are highlighted under scenarios that are as realistic as possible. 2022 MPA-Workshop Hydrogen Online meeting 10.11.2022 10.11.2022 2022-11-14 OPUS4-54525 Vortrag Rhode, Michael Bericht zum Fortschritt des laufenden Projekts: "Entwicklung von Wärmenachbehandlungskonzepten zur Vermeidung von Spannungsrelaxationsrissen" Dieses Dokument fasst den Projekfortschritt des BAM-Projektes "Entwicklung von Wärmenachbehandlungsstrategien zur Vermeidung von Spannungsrelaxationsrissen" im Rahmen des Fachausschusses 1 "Schweißmetallurgie" des DVS e.V. für das Projektjahr 2021 zusammen und stellt die wichtigsten Ergebnisse in Kurzform vor. 2022 Sitzung des FA1 "Schweißmetallurgie" der Forschungsvereinigung Schweißen und verwandte Verfahren des DVS e.V. Online meeting 22.03.2022 22.03.2022 2022-03-23 OPUS4-54447 Vortrag Rhode, Michael Fügetechnik für Wasserstofftechnologien: Ausgewählte Themen und Herausforderungen Die Präsentation fasst die Bedeutung der Fügetechnik für Wasserstofftechnologien im Rahmen der Arbeiten für einer Studie (DVS-Berichte Nr. 373) mit besonderer Berücksichtigung der Normung und Regelwerkssetzung zusammen. 2022 Sitzung des DIN-Gemeinschaftsarbeitsausschusses NA 092 00 05 GA, NAS/NMP: Zerstörende Prüfung von Schweißverbindungen Online meeting 10.03.2022 10.03.2022 2022-03-10 OPUS4-54448 Vortrag Rhode, Michael Bewertungsmethode zur Interaktion von Metallurgie und Reaktionskräften beim PWHT warmfester Stähle Die Präsentation fasst die Entwicklung einer Ersatzprüfmethode für sogenannte Stress-Relief-Cracks (SRC) bei dickwandigen und kriechfesten geschweißten Stahlkomponenten zusammen. Über die Kombination von gezielter mechanischer Beanspruchung unter hoher Temperaturbeanspruchung werden die Effekte des Post Weld Heat Treatments auf SRC realistisch erstmal auf Laborskala nachgebildet. 2022 Sitzung des DIN-Gemeinschaftsarbeitsausschusses NA 092 00 05 GA, NAS/NMP: Zerstörende Prüfung von Schweißverbindungen Online meeting 10.03.2022 10.03.2022 2022-03-11 OPUS4-54488 Vortrag Rhode, Michael Joining processes for components in hydrogen technologies: Current need and future importance This presentation gives an overview on the importance of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the three technological fields: hydrogen storage, transport and use (in terms of the emerging field of additive manufacturing). Finally, some remarks are given for necessary changes in the standardization. 2022 IIW Intermediate Meeting, Comm. II-A "Welding Metallurgy" Online meeting 17.03.2022 17.03.2022 2022-03-21 OPUS4-55462 Vortrag Richter, Tim; Rhode, Michael Hydrogen embrittlement and mechanical properties of 9 % Cr P92 steel and P91 weld metal Martensitic 9 %-Cr steels like P91 and P92 can show an increased susceptibility to delayed hydrogen assisted cracking. The focus of this study was the microstructure and heat treatment effect on the mechanical properties of P92 base material and P91 multi-layer weld metal in both as-welded and post weld heat treated (PWHT) condition. Tensile tests with hydrogen free reference samples and electrochemically hydrogen charged samples were carried out, the mechanical properties were assessed and supported by dedicated fractographic analysis. In addition, hydrogen and microstructure dependent fracture criteria were calculated. All investigated microstructures showed a hydrogen influenced degradation of the mechanical properties compared to the hydrogen free reference samples. In that connection, the as welded martensitic P91 weld metal had the highest degree of degradation in presence of hydrogen. The P91 PWHT weld metal and the P92 base material had comparable properties. From that point of view, a significantly increased risk for hydrogen assisted cold cracking during welding fabrication of P91 weld joints must be considered before any heat treatment is conducted. 2022 IIW Annual Assembly, Meeting of Commission IX-C Tokyo, Japan 21.07.2022 21.07.22 2022-08-10 OPUS4-53902 Vortrag Rhode, Michael Wasserstoffunterstützte Kaltrissbildung in Schweißnähten hochfester Stahlgüten - Anforderungen an die Prüfung Die Vortrag gibt einen Überblick, warum Kaltrissprüfung von geschweißten Stählen ständig weiterentwickelt werden muss. Am Beispiel des Implant- und Tekken-Tests werden die Einsatz- u. Anwendungsgrenzen bewertet. Zu berücksichtigen ist, dass beim Schweißen eine äußere mechan. Beanspruchung durch bauteilspezifische Steifigkeitsverhältnisse wirksam ist. Zusätzlich werden weiterführende Prüfverfahren zur Bestimmung der Wasserstoffkonzentration und -diffusion in Schweißnähten vorgestellt, wie die Trägergasheißextraktion (TGHE) für die Ermittlung der Wasserstoffkonzentration (ISO 3690) oder Hochtemperaturdiffusionskoeffizienten. Diese Werte sind für die schweißtechnische Praxis von großer Bedeutung, um Haltezeiten z.B. für das Wasserstoffarmglühen abzuleiten. 2021 Tagung Werkstoffprüfung 2021 Online meeting 02.12.2021 03.12.2021 2021-12-06 OPUS4-53647 Vortrag Rhode, Michael Bericht zum Fortschritt des Projektes "Entwicklung von Wärmenachbehandlungskonzepten zur Vermeidung von Spannungsrelaxationsrissen" zur Sitzung des FA1 Dieses Dokument fasst den Projekfortschritt des BAM-Projektes "Entwicklung von Wärmenachbehandlungsstrategien zur Vermeidung von Spannungsrelaxationsrissen" im Rahmen des Fachausschusses 1 "Schweißmetallurgie" des DVS e.V. 2021 Sitzung des FA1 "Schweißmetallurgie" der Forschungsvereinigung Schweißen und verwandte Verfahren des DVS e.V. Online meeting 26.10.2021 26.10.2021 2021-10-29 OPUS4-53607 Vortrag Richter, Tim; Diese, Marcel; Rhode, Michael; Schroepfer, Dirk Characterization of cracking phenomena in TIG welds of high and medium entropy alloy Multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) are rather new material concepts that are becoming increasingly important in materials research and development. Some HEA systems show significantly improved properties or combinations of properties, e.g., the overcome of the trade-off between high strength and ductility. Thus, the synthesis, the resulting microstructures, and properties of HEA have been primarily investigated so far. In addition, processing is crucial to achieve a transfer of potential HEA/MEA materials to real applications, e.g. highly stressed components. Since fusion welding is the most important joining process for metals, it is of vital importance to investigate the weldability of these materials. However, this has rarely been the subject of research up to date. For that reason, in this work the weldability depending on the surface preparation of a CoCrFeMnNi-HEA and a CoCrNi-MEA for TIG welding is investigated. The fusion welding of longer plates is described here for the first time for the CoCrNi alloy. The welds of both materials showed distinct formation of cracks in the heat affected zone (HAZ). Optical and scanning electron microscopy analysis clearly confirmed an intergranular fracture topography. But based on the results, the crack mechanism cannot be conclusively clarified as either a liquid metal embrittlement (LME) or hot cracking like liquid film separation occurred. 2021 2nd International Conference on Advanced Joining Processes Online meeting 21.10.2021 22.10.2021 2021-10-26 OPUS4-53608 Vortrag Richter, Tim; Schröpfer, Dirk; Rhode, Michael Friction stir welding of a CoCrFeMnNi high entropy alloy compared to AISI 304 austenitic stainless steel: evolution of microstructure and mechanical properties High entropy alloys (HEA) are a new class of materials. In contrast to conventional alloys, HEA are single-phase alloys with at least five alloying elements. HEAs have enormous application potential due to (postulated) excellent structural property combinations from low to high temperatures. For HEA-application as structural materials in real components, a key issue is the suitability for joining processing. Requirements for the reliable and safe joining of these materials are crucial regarding economical component manufacture for future applications. In this context, friction stir welding (FSW) is a promising joining process due to the welding process temperature below the material melting point avoiding major issues, e. g. formation of (hard and brittle) intermetallic phases, which may have detrimental influences on the weld joint properties. This study presents elementary research about the FSW process influences on a CoCrFeMnNi-HEA with focus on the microstructure and mechanical properties. For that purpose, the FSW joint of the HEA is compared to that of an austenitic stainless steel AISI 304. The microstructures of the welds were investigated and characterized by means of light microscopy, SEM, EBSD and XRD. Hardness and tensile testing were applied to determine influences on the mechanical properties. Generally, a comparable weldability of HEA and AISI 304 in terms of metallurgical characteristics and resulting mechanical properties exhibited. For the weld joints of both materials typical characteristics regarding FSW were observed within the weld metal and thermo-mechanically influenced zone: fine-grained stirred zone with increased hardness and reduced fracture elongation compared with the respective base material. 2021 Bachelor-, Master-, Doktoranden-Kolloquium Magdeburg, Germany 20.10.2021 2021-10-26 OPUS4-53048 Vortrag Rhode, Michael Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. 2021 IIW Annual Assembly, Meeting of Commission IX-C Online meeting 15.07.2021 15.07.2021 2021-08-02 OPUS4-53049 Vortrag Rhode, Michael Hydrogen embrittlement of steels Hydrogen assisted cracking of metals is a serious issue in the safety of components, espcially in case of welding. The current presentation gives an overview on specialized testing procedures at Department 9 including the quantitative determination of hydrogen. 2021 HYDROGENIUS BAM Joint Hydrogen Symposium Online meeting 06.07.2021 06.07.2021 2021-08-02 OPUS4-53497 Vortrag Rhode, Michael HEA Processing - SURDIA - Current R&D at BAM This presentation summarizes the latest results on the BAM-Themenfeld project SURDIA on processing of high-entropy alloys (HEAs) at BAM. At first, the influence of machining by ultrasonic-assisted milling on the surface integrity is presented. Second, the weld processing by Tungsten Inert Gas (TIG) welding is presented and the results of the Friction Stir Welding (FSW), which is conducted at BAM for the first time. 2021 DFG SSP 2006 - Subgroup meeting on the synthesis and processing of CCAs/HEAs Online meeting 08.10.2021 08.10.2021 2021-10-11 OPUS4-53554 Vortrag Rhode, Michael Joining Processes in Hydrogen Technologies - Current need and future R&D activites, a review This study gives an overview on the important field of joining processes for component fabrication in hydrogen technologies. For that reason, the current need and future research and developement activites are highlighted for the different technological field of hydrogen generation, storage, transport and use. In addition, the emerging field of additive manufacturing is included. Finally, some remarks are given for necessary changes in the standardization and its challenges. 2021 46th Seminar - Additive Manufacturing, Hydrogen, Energy, Integrity Online meeting 12.10.2021 13.10.2021 2021-10-18 OPUS4-52239 Vortrag Rhode, Michael Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9 % Cr P92 steel and P91 weld metal Martensitic 9 %-Cr steels like P91 and P92 show susceptibility to delayed hydrogen assisted cracking depending on their microstructure. In that connection, effective hydrogen diffusion coefficients are used to assess the possible time-delay. The small number of available diffusion coefficients varies already at room temperature by several orders of magnitude (mostly regarded as result of present microstructure). Especially P91 weld metal diffusion coefficients are rare so far. For that reason, electrochemical permeation experiments had been conducted using P92 base metal and P91 weld metal (in as-welded and heat-treated condition) with different thicknesses. The diffusion coefficients are calculated by two methods (time-lag and inflection point method) were performed. The results show that, despite of microstructural effects, the sample thickness must be considered as it influences the calculated diffusion coefficients. Finally, the comparison of calculated and measured hydrogen concentrations (determined by carrier gas hot extraction) enables the identification of realistic diffusion coefficients. 2021 IIW Intermediate Meeting, Comm. IX-C "Welding of creep and heat-resistant materials" Online meeting 08.03.2021 09.03.2021 2021-03-10 OPUS4-53321 Vortrag Kannengießer, Thomas; Rhode, Michael Fügetechnik in Wasserstofftechnologien - Forschungsbedarf für die Branche Die Studie gibt einen kurzen Überblick über die jetzige Bedeutung der Fügetechnik in Wasserstofftechnologien und über zukünftige Forschungsbedarfe für die Branche in den einzelnen Technologiefeldern Wasserstofferzeu-gung, -speicherung, -transport und -nutzung. Fügetechnologien haben dabei wesentliche Bedeutung für die er-folgreiche Umsetzung von technischen Komponenten der Wasserstofftechnologien. Die Schwerpunkte bzw. For-schungsbedarfe ergeben sich bspw. durch die Erstellung neuer Infrastruktur für Wasserstoffspeicherung und -transport sowie durch Umnutzung der bestehenden Erdgasinfrastruktur. Bei der Wasserstofferzeugung und -anwendung wird z.B. die Entwicklung effiziente Massenproduktionsmethoden von Elektrolyseuren und Brennstoff-zellen einen wichtigen Meilenstein bilden und laserbasierte Fügetechnologien sind hier zum Teil schon etabliert. Die additive Fertigung nimmt dabei eine Querschnittsposition ein und besitzt hohes Anwendungspotential für die Zukunft z.B. für die Fertigung von Komponenten in Gasturbinen. Aus den technischen Fragestellungen und For-schungsbedarfen ergeben sich zudem Herausforderungen für die notwendige Neu- und Weiterentwicklung von technischen Regelwerken und Normen und den Eingang in die Aus- und Weiterbildung von fügetechnischem Fachpersonal. 2021 DVS Congress 2021 Essen, Germany 14.09.2021 17.09.2021 2021-09-21 OPUS4-51116 Vortrag Rhode, Michael Welding of high-entropy alloys - New material concept vs. old challenges HEAs represent a relatively new class of materials. The the alloy concept is fundamentally different from the most conventional materials and alloys that are used today. Recently, the focus of HEA designs is more application-based. For that purpose, the elements of interest are carefully selected and multiple phases as well as micro-structures are deliberately adjusted. Currently, only limited attention has been paid to weldability of HEA. This encompasses possible effects on metallurgy and its influence on the desired properties. It remains open if welding causes e.g. considerable number of intermetallic phases or segregations and their effect on weld joint properties. For that reason, the scope of this study is to summarize already available studies on welding of HEAs with respect to the HEA-type, the applied welding process and its influence on the weld joint properties. 2020 IIW Annual Assembly, Meeting of Commission II-A Online meeting 20.07.2020 20.07.2020 2020-08-17 OPUS4-51187 Vortrag Rhode, Michael Wasserstoffdiffusion und lokale Volta-Potentiale in Hoch- und Mittelentropie-Legierungen Hochentropie-Legierungen (HEAs) zeichnen sich durch einen Mischkristall-System aus mindestens fünf und Mittelentropie-Legierungen (MEAs) durch mindestens drei Hauptlegierungselemente aus, in äquiatomarer Zusammensetzung. Sie zeigen außergewöhnliche Anwendungseigenschaften, wie z.B. hohe Festigkeit, Duktilität oder Korrosionsbeständigkeit. Zukünftige HEA/MEA-Komponenten aufgrund ihrer Eigenschaften für wasserstoffhaltige Umgebungen (wie Behälter für kryogene oder Hochdruckspeicherung) von Interesse. Daher ist die Bewertung der Wasserstoffabsorption und die Diffusion in diesen Materialien von großer Bedeutung. Dazu wurden in unserer Studie eine CoCrFeMnNi-HEA und eine CoCrNi-MEA untersucht. Die Proben wurden elektrochemisch mit Wasserstoff beladen. Für die Ermittlung des Wasserstoffdiffusionsverhaltens wurde die thermische Desorptionsanalyse (TDA) mit unterschiedlichen Heizraten bis zu 0,250 K/s angewandt. Die nachfolgende Peakentfaltung der Signale führte zu Hochtemperatur-Desorptionsspitzen und Wasserstofftrapping auch über 280°C. Eine resultierende Gesamtwasserstoffkonzentration > 40 ppm wurde für den MEA ermittelt und > 100 ppm für den HEA. Dies deutet auf zwei wichtige Effekte hin: (1) verzögerte Wasserstoffdiffusion und (2) eine beträchtliche Menge an getrapptem Wasserstoff auch bei hoher Temperatur. Beide Effekte können hinsichtlich einer wasserstoffunterstützten Rissbildung kritisch werden, dies erfordert jedoch weitere Untersuchungen. Zusätzlich erfolgte die Bestimmung des lokalen Volta-Potentials mittels hochauflösender Kelvin-Sonden-Kraft-Mikroskopie (SKPFM). Die ermittelten Scans zeigen einen bestimmten Einfluss der Wasserstoffbeladung auf die Potentiale. 2020 Symposium on Materials and Joining Technology Online meeting 07.09.2020 08.09.2020 2020-09-09 OPUS4-48449 Vortrag Rhode, Michael Hydrogen diffusion in creep-resistant 9%-Cr P91 steel weld metal 9 %-Cr steel P91 is widely used in power plants due to the excellent creep-resistance. Components of this steel are typically welded and demand for careful welding fabrication, whereas a so-called post weld heat treatment (PWHT), must be conducted to increase the toughness and decrease the hardness of the martensitic as-welded (AW) microstructure. Before the PWHT, a hydrogen removal (or dehydrogenation) heat treatment is necessary as hardened AW martensitic microstructure is generally prone to delayed hydrogen assisted cracking (HAC). The microstructure and temperature dependent hydrogen diffusion is an important issue as it determines how long a potential crack-critical hydrogen concentration could remain in the microstructure. In this context, reliable hydrogen diffusion coefficients of P91 weld metal are rare. Hence, the diffusion behavior of P91 multi-layer weld metal was investigated in two different microstructure conditions: AW and further PWHT (760 °C for 4 h). Two different experimental techniques were used to cover a wide range of hydrogen diffusion temperatures: the electrochemical permeation technique (PT) at room temperature and the carrier gas hot extraction (CGHE) for a temperature range from 100 to 400 °C. From both techniques typical hydrogen diffusion coefficients were calculated and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences in hydrogen diffusivity. The biggest deviations were identified for room temperature. In this case, the AW condition shows significant hydrogen trapping and up to seven times lower diffusion coefficients. Additionally, PT investigations showed a preferred diffusion direction of hydrogen in the weld metal expressed by the diffusion coefficients and the permeability for both heat treatment conditions. The CGHE generally revealed lower diffusion coefficients for the AW microstructure up to 200 °C. In addition, the AW condition showed hydrogen concentrations up to 50 ml/100 g (considering electrochemical charging). Nonetheless, this hydrogen was not permanently (reversibly) trapped. Nonetheless, this temperature is approximately 100 °C below recommended dehydrogenation heat treatment (DHT). This has two main consequences: (I) in case of welding is interrupted or no DHT is conducted, a HAC susceptibility of hardened martensitic P91 weld metal cannot be excluded and (II) DHT can be conducted at temperatures around 200 °C below the recommended temperatures. 2019 IIW Annual Assembly, Meeting of Commission IX-C "Creep and heat resistant welds" Bratislava, Slovakia 07.07.2019 10.07.2019 2019-07-15 OPUS4-48402 Vortrag Rhode, Michael Hydrogen in weld joints - An underestimated risk? - Utilization potential of gas analytics versus safety of welded components Hydrogen was once called "the versatile embrittler" [1], which summarizes very well the effect on reduction of ductility and/or toughness in technical alloys like steel. In that connection, welding is one of the most important component fabrication technologies. During welding, hydrogen can be transferred to the weld pool from manifold sources (like contaminations, residuals at the surface, etc.). As hydrogen embrittles a material, the safety of welded components with hydrogen is always a critical issue. Weld heat input causes additional changes in the microstructure like grain growth or partial dissolution of precipitates and many more. All these things influence the mechanical properties and also represent hydrogen traps. These traps decrease the hydrogen diffusion compared to the ideal lattice. The result can be so-called delayed hydrogen assisted cracking (HAC) of the weld joint due to the significantly decreased diffusivity by trapped hydrogen. This is often an underestimated risk as those cracks can appear in the weld joint even after some days! It is essential to know about hydrogen ingress during welding and the microstructure specific hydrogen diffusion. Both are depended on weld parameter influence and the chemical composition of the base material and weld metal. For that purpose, gas analytic methods like solid-state carrier gas hot extraction (CGHE) are useful tools to: (1) identify detrimental hydrogen concentrations from weld joints, (2) binding energies from hydrogen traps by thermal desorption analysis or (3) high-temperature diffusion coefficients. Those values are extremely important for welding practice in terms of recommendations on realistic hydrogen removal heat treatment (HRHT) after welding. Considering the increasing use of "digital" experiments, the data is also needed for reliable numerical simulations of HAC process or HRHT-effectiveness. The present contribution gives an overview on the influence of hydrogen on weld joints, the necessity, methods and standards for hydrogen determination (CGHE) with the aim of fabrication of safe welded and crack-free components. [1] R. A. Oriani (1987), Corrosion 43(7):390-397. doi: 10.5006/1.3583875 2019 20. Tagung Festkörperanalyse - FKA20 Vienna, Austria 01.07.2019 03.07.2019 2019-07-08 OPUS4-44426 Vortrag Rhode, Michael Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in presence of diffusible hydrogen, i.e. hydrogen-assisted cracking (HAC) generally increases. HAC is a result of the critical interaction of local microstructure, mechanical load and hydrogen concentration. In existing standards for welding of HSLA steels, recommendations (preheating, interpass temperature and hydrogen removal heat treatment) are given to limit the amount of introduced hydrogen during welding. The recommendations are based on investigations with conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g. the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, hence, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed depending on heat control. The influence of different weld seam opening angles (grooves), heat input, interpass temperature and hydrogen removal procedures was investigated. The results show that weldments with narrow groove contained increased diffusible hydrogen amount. Reasons had been longer diffusion path and higher wire feeding rate compared to conventional welds with wider 60° Vgroove. Hydrogen concentration has been reduced by decreasing both the heat input and interpass temperature. Hydrogen free weldments were achieved via hydrogen removal heat treating at 250 °C for 5 h subsequently after welding. Regarding the strength of the investigated steel, it is recommended to conduct a heat treatment after welding. For the first time, hydrogen concentration gradients were experimentally determined across the weld seam thickness in HSLA multi-layer welds. 2018 Intermediate Meeting of IIW Commission II-A Genoa, Italy 05.03.2018 05.03.2018 2018-03-12 OPUS4-44427 Vortrag Rhode, Michael Specimen temperature during CGHE and influence on hydrogen determination Hydrogen determination in weld seams is standardized in ISO 3690. In accordance to this standard, a defined time for hydrogen collection has to be anticipated for different extraction temperatures. In other words, the temperature is the most important value that has to be monitored in addition to the aimed hydrogen determination. The specimen geometry has influence on the real sample temperature during CGHE vs. the adjusted furnace temperature. This presentation gives a short summary on possible influences on the "correct" hydrogen determination temperature during carrier gas hot extraction (CGHE) using infrared radiation driven furnace. The main findings are: (1) specimen surface is important in terms of polished or oxidized condition, (2) specimen geometry is important for fast heating, (3) PID-values of control software are a considerable influence to accelerate the heating process depite thick specimens and (4) independent sample temperature determination before CGHE is strongly recommended. 2018 Intermediate Meeting of IIW Subcommission II-E Genoa, Italy 05.03.2018 05.03.2018 2018-03-12 OPUS4-45520 Vortrag Rhode, Michael "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). 2018 IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E Nusa Dua, Bali Island, Indonesia 15.07.2018 20.07.2018 2018-07-23 OPUS4-44879 Vortrag Rhode, Michael Hydrogen trapping in T24 steel weld joints - Microstructure influence vs. experimental design effect on activation energy for diffusion A common approach to describe hydrogen traps is by their activation energy that is necessary to release hydrogen from the trap. In the present study, Cr-Mo-V steel T24 (7CrMoVTiB10-10) base material and TIG weld metal were investigated. Electrochemically hydrogen charged specimens were analyzed by thermal desorption analysis (TDA) with different linear heating rates. The results show two different effects. At first, the microstructure effect on trapping is evident in terms of higher hydrogen concentrations in the weld metal and increased activation energy for hydrogen release. Secondly, it is necessary to monitor the real specimen temperature. A comparison between the adjusted heating rate and the real specimen temperature shows that the calculated activation energy varies by factor two. Thus, the trap character in case of the base material changes to irreversible at decreased temperature. Hence, the effect of the experimental procedure must be considered as well if evaluating TDA results. 2018 Forschungsseminar Fügetechnik des IWF, Otto-von-Guericke-Universität Magdeburg, Germany 25.04.2018 25.04.2018 2018-05-14