Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-51210 Beitrag zu einem Tagungsband Auersch, Lutz A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. Leuven KULeuven 2020 Proc. of ISMA/USD 2020 International Conference on Noise and Vibration Engineering (ISMA/USD) Online meeting 07.09.2020 09.09.2020 2611 2625 2020-09-14 OPUS4-51212 Vortrag Auersch, Lutz A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. 2020 International Conference on Noise and Vibration Engineering (ISMA/USD 2020) Online meeting 07.09.2020 09.09.2020 2020-09-14 OPUS4-56738 Vortrag Auersch, Lutz Challenges of vibration prediction - realistic irregularities, the scattering of axle pulses, and the tunnel-surface reduction A prediction software has been developed by BAM. The following topics have still be solved. A realistic irregularity spectrum can be derived from axle-box measurements. It agrees wel with the spectrum used for the high-speed 2 project in the United Kingdom. In addition, the scattering of axle pulses should be included. This mid-frequency component can also be found in the HS2 procedure. Finally, the reduction in case of a tunnel line compared to a surface line should be included. Some measurement results of BAM, HS2 and other institutes show a certain mid-frequency reduction. This is due to the load distribution of the tunnel which yields softer axle pulses and the scattered axle impulses are reduced. 2022 ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems London, UK 21.11.2022 22.11.2022 2023-01-02 OPUS4-26860 Zeitschriftenartikel Auersch, Lutz Dynamic behavior of slab tracks on homogeneous and layered soils and the reduction of ground vibration by floating slab tracks The dynamics of slab tracks and floating slab tracks are analyzed by multibeam models for the track and by integration in the wave-number domain for the soil, which is modeled as a layered half-space. Frequency-dependent compliances and force transfers are calculated for a great variety of track and soil parameters. The distribution of the load and the displacements along the track is investigated as well as the wave propagation perpendicular to the track and the ground vibration amplitudes. The floating slab track has a dominating plate-mat resonance and a strong high-frequency reduction. A track-soil resonance can also be recognized for an unisolated slab track in the case of layered soils. Generally, there is a strong damping of the track by the soil. The reduction effect of the slab mat is mainly owing to the elimination of this strong damping. The continuous soil yields slightly different rules for the displacements and force densities than those of a Winkler support. The total force transfer from the rail to the soil is the best criterion to judge the effectiveness of a floating slab track in reducing the ground vibration at some distance from the railway line. The total force transfer is easier to calculate than the double Fourier integrals of the ground vibration amplitudes, namely in the far field, and it has the best correlation with the reduction of the ground vibration. New York, NY, USA Soc. American Society of Civil Engineers (ASCE) 2012 Journal of engineering mechanics / ASCE 138 8 923 933 10.1061/(ASCE)EM.1943-7889.0000407 2016-02-19 OPUS4-56036 Vortrag Auersch, Lutz Effects of a varying track and soil stiffness on ground vibrations near railway lines Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads. The dynamic axle loads are generated by the varying wheel displacements under the static axle load by the acceleration of the unsprung mass of the rail vehicle. The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a "scattered" part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. 2022 Railways 2022 Montpellier, France 22.08.2022 25.08.2022 2022-10-18 OPUS4-56605 Beitrag zu einem Tagungsband Auersch, Lutz Effects of a varying track and soil stiffness on ground vibrations near railway lines Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads which are generated by the acceleration of the unsprung mass (from the varying wheel displacements under the static axle load). The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a "scattered" part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. 2022 Proceedings of Railways 2022 International Conference Railways 2022 Montpellier, France 22.08.2022 25.08.2022 1 11 2022-12-21 OPUS4-48432 Buchkapitel Auersch, Lutz Krylov, Victor Fast trains and isolating tracks on inhomogeneous soils Methods have been presented for detailed studies of railway vibration and for the fast prediction of train-induced ground vibration. The ground vibration is generated by static or dynamic loads. The main purpose of this contribution was to show the influence of inhomogeneous soils on the different vibration components. Layered soils, namely a soft layer on a stiffer half-space, yield a quite specific transmission behavior. The low-frequency and sometimes also high-frequency cut-off of the transfer function of the soil is demonstrated in theory and by experiments at many sites of which the soil model is approximated from dispersion and transfer function measurements. The layer frequency divides the frequency range in a low-frequency range, where the stiff half-space rules the low amplitudes, and a high amplitude high-frequency range which is mainly determined by the softer top layer. A thick soft layer yields a very low layer frequency, so that the higher soft soil amplitudes have a wider range down to low frequencies. A thin layer yields a high layer frequency, so that the high frequencies above this layer frequency are dominant. The higher the contrast between the stiff half-space and the soft layer is, the stronger the increase between the half-space and layer amplitudes, the more characteristic are the spectra of the soil transfer function. The range of measured soils has been from vS1 down to 125 m/s, vS2 up to 1000 m/s and the layer frequencies are within 10 Hz < f0 < 75 Hz. Moreover, during this measuring campaign in Switzerland, all 11 sites showed clearly the layer-on-half-space behaviour. The transfer functions of inhomogeneous soils have been used to predict the ground vibration due to dynamic axle loads which is usually thought to be the most important component. The passage of static loads, in the contrary, results in very small vibration amplitudes for low train speeds, which can only be found at near distances and at low frequencies. They attenuate very rapidly with distance and lose very rapidly the higher frequency content. The passage of static axle loads can be included in the prediction of railway vibration just for completeness. Special attention should be given to the case if the train runs with the Rayleigh-wave speed of the soil (Rayleigh train). The Rayleigh-train effect is strongest for a homogeneous half-space: At the near-field of the track the amplitudes are raised strongly compared to normal trains, and in addition, little attenuation with distance is observed. In case of a layered soil, the low-frequency cut-off reduces the frequency range and the amplitudes of the homogeneous quasi-static ground vibrations. Therefore, the Rayleigh-train effects are clearly reduced by a layered soil and they disappear if the layer frequency (for example for a thin layer) is higher than the frequency band of the axle impulse. The Rayleigh-train effect could completely disappear in a randomly inhomogeneous soil, but this has not been analysed so far. The axle impulses from static loads can have an additional, quite different effect. They can be scattered by a randomly inhomogeneous soil so that a part (the scattered part) of the axle impulse can reach further distances from the track. This can establish a certain mid-frequency component of the ground vibration which becomes dominant in the far-field, and this important component exists for all train speeds. Experimental results from BAM and international measurements show the importance of the corresponding frequency range. The mitigation of train induced ground vibration by elastic and stiff track elements has been analysed threefold. The vehicle-track interaction yields the reduction at high frequencies above the vehicle-track resonance. This is the standard effect. The filtering of trackbed errors by the bending stiffness of the track yields a certain mid-frequency effect. An even stronger mid-frequency effect is predicted for the mitigation of the scattered axle impulses by the bending stiffness and elastic elements of the track. 1 London ICE Publishing 2019 Ground vibrations from high-speed railways 978-0-7277-6379-2 Chapter 2, 27 75 10.1680/gvfhsr.63792.027 2019-07-11 OPUS4-33682 Zeitschriftenartikel Auersch, Lutz Force and ground vibration reduction of railway tracks with elastic elements The reduction of train-induced ground vibration by elastic elements such as rail pads and sleeper pads has been analyzed by a combined finite-element boundary-element method. The dynamic compliance of the track, the transfer function of the total force on the ground and the ground vibration ratios have been calculated for a variety of isolated and un-isolated track systems. It has been found that the soil force transfer, which describes the excitation force of the soil, is an appropriate quantity to predict the reduction of the ground vibration and the effectiveness of isolated tracks. All force transfer functions of isolated tracks display a vehicle–track resonance where the wheelset on the compliant track is excited by wheel and track irregularities. At higher frequencies, considerable reductions of the amplitudes are observed as the benefit of the resilient element. The influence of the stiffness of the rail or sleeper pads, the ballast and the soil, and the mass of the sleeper and the wheelset on the resonance frequency and the reduction has been investigated. Sleeper pads are advantageous due to the higher mass that is elastically supported compared to the rail-pad track system. The combination of elastic rail and sleeper pads has been found to be disadvantageous, as the second resonance occurs in the frequency range of intended reduction. Thousand Oaks, CA, USA Sage Science Press 2015 Journal of vibration and control (JVC) 21 11 2246 2258 10.1177/1077546313507099 2016-02-20 OPUS4-49446 Vortrag Auersch, Lutz Four typical errors in train induced ground vibration and ground vibration mitigation Mitigation measures of railway induced vibration have been demonstrated at the emission, transmission and immission part. It must be carefully observed that the correct masses and stiffnesses are used. Typical mistakes have been shown, - 1D models for vehicle-track interaction, - impedance instead of stiffness for the infill material of a trench, - rigid buildings or neglecting the soil-building interaction. The dominant mid-frequency part of the ground vibration is due to the irregular soil. 2019 ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems Milano, Italy 14.10.2019 15.10.2019 2019-10-31 OPUS4-47090 Posterpräsentation Auersch, Lutz Ground vibration due to railway traffic - the calculation of the effects of moving static loads and their experimental verification The regular static Response is important at low frequencies and near-field. The regular dynamic response due to sleeper passage is more important at high frequencies. The irregulär static response due to randomly varying soil properties is more important at medium frequencies and at far-field. 2004 8th Workshop on Railway Noise and Vibration Buxton, UK 08.09.2004 11.09.2004 2018-12-20