Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-26860 Zeitschriftenartikel Auersch, Lutz Dynamic behavior of slab tracks on homogeneous and layered soils and the reduction of ground vibration by floating slab tracks The dynamics of slab tracks and floating slab tracks are analyzed by multibeam models for the track and by integration in the wave-number domain for the soil, which is modeled as a layered half-space. Frequency-dependent compliances and force transfers are calculated for a great variety of track and soil parameters. The distribution of the load and the displacements along the track is investigated as well as the wave propagation perpendicular to the track and the ground vibration amplitudes. The floating slab track has a dominating plate-mat resonance and a strong high-frequency reduction. A track-soil resonance can also be recognized for an unisolated slab track in the case of layered soils. Generally, there is a strong damping of the track by the soil. The reduction effect of the slab mat is mainly owing to the elimination of this strong damping. The continuous soil yields slightly different rules for the displacements and force densities than those of a Winkler support. The total force transfer from the rail to the soil is the best criterion to judge the effectiveness of a floating slab track in reducing the ground vibration at some distance from the railway line. The total force transfer is easier to calculate than the double Fourier integrals of the ground vibration amplitudes, namely in the far field, and it has the best correlation with the reduction of the ground vibration. New York, NY, USA Soc. American Society of Civil Engineers (ASCE) 2012 Journal of engineering mechanics / ASCE 138 8 923 933 10.1061/(ASCE)EM.1943-7889.0000407 2016-02-19 OPUS4-42487 Vortrag Auersch, Lutz Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. 2017 EURODYN 2017 Rome, Italy 10.09.2017 13.09.2017 2017-10-16 OPUS4-42088 Zeitschriftenartikel Auersch, Lutz; Said, Samir; Müller, Roger Measurements on the vehicle-track interaction and the excitation of railway-induced ground vibration Two railway measurement campaigns have been performed in Germany and Switzerland which yield insight in the vehicle-track-soil interaction. The campaign in Germany has included simultaneous measurement of vehicle, track, and soil vibrations during train runs with 16, 25, 40, 63, 80, 100, 125, 140, 160 km/h, and impulse measurements of the passenger car, three track sections and the soil. Two ballast tracks, one on the soil surface and one on a concrete bridge, have been investigated as well as a slab track in a tunnel. Ten different sites in Switzerland have been measured for soil properties and train-induced ground vibrations, which allow to determine the excitation forces of the railway traffic. New axle-box measurements at some of the Swiss sites have been analysed to get further experimental evidence. All these measurements have been evaluated to characterize the excitation processes. Relations between vehicle vibration and ground vibration can be observed. The vehicle vibrations, namely the accelerations of the wheelsets, yield the dynamic forces due to the passage over the irregularities of the vehicle and the track. The ground vibrations are correlated to these dynamic forces to a certain extent. Some mid-frequency ground vibration amplitudes, however, are higher than expected from the dynamic excitation forces. The experimental observations can be explained by an irregular response to the passage of the static loads, that means the passage of the static loads over an irregular ballast or soil. This correct understanding of the excitation processes is important for the prediction as well as for the mitigation of railway induced ground vibrations. London Elsevier 2017 Procedia Engineering 199 X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017) 2615 2620 urn:nbn:de:kobv:b43-420889 10.1016/j.proeng.2017.09.390 http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de 2017-09-25 OPUS4-15015 Beitrag zu einem Tagungsband Auersch, Lutz M. Papadrakakis, ; D.C. Charmpis, ; N.D. Lagaros, ; Tsompanakis, Y. Simple and advanced boundary-element method for the soil and its application to railway dynamics Athen The European Community on Computational Methods in Applied Sciences (ECCOMAS) 2007 COMPDYN 2007 - Computational methods in structural dynamics and earthquake engineering (Proceedings) COMPDYN 2007 Rethymno, Crete, Greece 2007-06-13 2007-06-16 1 12 2016-02-19 OPUS4-45457 Beitrag zu einem Sammelband Auersch, Lutz; Said, Samir Bian, Xuecheng; Chen, Y.; Ye, X. Vibration measurements for the control of damaged and repaired railway tracks This contribution presents experimental methods to detect track damage. At BAM (Federal Institute of Material Research and Testing), a measuring car with a measuring system of 72 channels, geophones, mountings, cables, harmonic and impulsive exciters is used for dynamic measurements of the track, the soil and buildings. An instrumented hammer allows force measurements and to evaluate transfer functions of the track, and the soil. Wave measurements are used to identify the soil characteristics. Train passages are measured at the track and for the train induced ground vibrations. In addition to these in situ options, tests of tracks or track elements can be performed in a large laboratory. Singaporer Springer Zhejiang University 2018 Environmental Vibrations and Transportation Geodynamics 978-981-10-4507-3 13 30 10.1007/978-981-10-4508-0_2 2018-07-13