Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-47383 Zeitschriftenartikel Vogl, Jochen; Yim, Y.-H.; Lee, K.-S.; Goenaga-Infante, H; Malinovskiy, D.; Hill, S.; Ren, T.; Wang, J.; Vocke, R. D.; Murphy, K. E.; Nonose, N.; Rienitz, O.; Noordmann, J. Certification of ERM-EB400, the first matrix reference material for lead isotope amount ratios, and ERM-AE142, a lead solution providing a lead isotopic composition at the edge of natural variation Lead isotope amount ratios are commonly used in diverse fields such as archaeometry, geochemistry and forensic science. Currently, five reference materials with certified lead isotope amount ratios are available, namely NIST SRM 981, 982 and 983, GBW-04442 and NMIJ 3681-a. Only NIST SRM 981 and NMIJ 3681-a have approximately natural isotopic compositions, and NIST SRM 981 is predominantly used for correcting mass discrimination/mass fractionation in the applied mass spectrometric procedures. Consequently, there is no other certified reference material available to be used for validation and/or quality control of the analytical procedures applied to lead isotope amount ratio measurements. To fill this gap, two new reference materials have been produced and certified for their lead isotope amount ratios. For both certified reference materials, complete uncertainty budgets have been calculated and SI traceability has been established. This provides the users with independent means for validating and verifying their analytical procedures and for conducting quality control measures. ERM-EB400 is a bronze material with a nominal lead mass fraction of 45 mg kg-1 and certified lead isotope amount ratios of n(206Pb)/n(204Pb) = 18.072(17) mol mol-1, n(207Pb)/n(204Pb) = 15.578(18) mol mol-1 and n(208Pb)/n(204Pb) = 38.075(46) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. ERM-AE142 is a high-purity solution of lead in 2% nitric acid with a nominal mass fraction of 100 mg kg-1 and certified Pb isotope amount ratios of n(206Pb)/n(204Pb) = 21.114(17) mol mol-1, n(207Pb)/n(204Pb) = 15.944(17) mol mol-1 and n(208Pb)/n(204Pb) = 39.850(44) mol mol-1 with the associated expanded uncertainties (k = 2) given in brackets. Both materials are specifically designed to fall within the natural lead isotopic variation and to assist users with the validation and verification of their analytical procedures. Note that while one of these reference materials requires the chemical separation of Pb from its matrix (ERM-EB400), the other does not (ERM-AE142). As additional information, δ208/206PbNIST SRM981 values are provided for both materials. For ERM-AE142, a delta value of δ208/206PbNIST SRM981 = -28.21(30) ‰ was obtained, and for ERM-EB400, a delta value of δ208/206PbNIST SRM981 = -129.47(38) ‰ was obtained, with the associated expanded uncertainties (k = 2) given in brackets. John Wiley & Sons International Associationof Geoanalsysts 2019 Geostandards and Geoanalytical Research 43 1 23 37 10.1111/ggr.12253 2019-02-15 OPUS4-47929 Zeitschriftenartikel Sargent, M; Goenaga-Infante, H; Inagaki, K; Ma, L; Meija, J; Pramann, A; Rienitz, O; Sturgeon, R; Vogl, Jochen; Wang, J; Yang, L The role of ICP-MS in inorganic chemical metrology ICP-MS has played a key role in inorganic chemical metrology for 25 years, from the 1993 CIPM feasibility study which led to establishment of the CCQM. Since that time, the Inorganic Analysis Working Group of the CCQM has organised 56 international comparisons involving measurements by ICP-MS and, in a recent comparison, 16 different national institutes submitted their results using the technique. Metrological applications of ICP-MS currently address an enormous range of measurements using a wide variety of instrumentation, calibration strategies and methodologies. This review provides an overview of the ICP-MS field with an emphasis on developments which are of particular relevance to chemical metrology. Examples from CCQM comparisons and the services available from the participants are used to illustrate how the capability and scope of ICP-MS methods have expanded far beyond the expectations of 1993. This is due in part to the research and development Programmes of the national institutes which participate in the CCQM. They have played a key role in advancing new instrumentation and applications for elemental analysis, isotope dilution mass spectrometry, determination of isotopic ratio or composition, and speciation of organometallic compounds. These developments are continuing today, as demonstrated by work in new fields such as heteroatom quantitation of proteins, characterisation and counting of nanoparticles using spICP-MS, and LA-ICP-MS analysis of solid materials. IOP Publishing BIPM 2019 Metrologia 56 3 034005 10.1088/1681-7575/ab0eac 2019-05-13