Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-35513 Forschungsbericht Schoknecht, Ute; Mathies, Helena; Wegner, R.; Uhlig, S.; Baldauf, H.; Colson, B. Emissions of material preservatives into the environment - realistic extimation of environmental risks through the improved characterisation of the leaching of biocides from treated materials used outdoors This report supports the implementation of European regulations on biocidal products for the product types 7, 9 and 10. Emission of active substances from material preservatives into environmental compartments can occur due precipitation. Risk characterisations have to be based on estimations of environmental concentrations of target substances leached from material preservatives. Harmonised test procedures are required to predict environmental impact due to leaching. Seventeen treated articles, mainly paints, but also a textile, sealing tapes and sealing masses were investigated by intermittent contact to water to prove suitability of the proposed laboratory test procedure. Parameters that affect leaching of active substances were examined. Further development of a semi-analytical model to describe laboratory leaching data revealed that the model can be improved if changes of the leachability of substances during the test are supposed and integrated. Six paints and a textile were exposed to weathering to compare results from laboratory and field experiments. Similarities between leaching processes in both test approaches were observed. Generally, emissions of active substances are considerably higher in laboratory tests than from vertically installed test specimens exposed to weathering. Competing processes that cause losses of active substances can occur in both tests, but to a higher degree in field experiments. In addition, the influence of meteorological parameters on leaching processes was investigated. Factors besides the amount of driving rain were identified that effect leaching processes by complex interaction. Relations between laboratory and field data were analysed, and the applicability of the semi-analytical model was tested for field data. Guidance documents for leaching tests under laboratory and field conditions were drafted and discussed with experts on EU Level workshop 3./4. July 2014, BAM, Berlin), and are included in this Report. Umweltbundesamt 2016 1 136 urn:nbn:de:kobv:b43-355139 http://www.gesetze-im-internet.de/urhg/index.html 2016-03-17