Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-27767 Beitrag zu einem Tagungsband Schmidt, Wolfram; Radlinska, A.; Nmai, C.; Buregyeya, A.; Lai, W.L.; Kou, S. Uzoegbo, H.C.; Schmidt, Wolfram Why does Africa need African concrete? An observation of concrete in Europe, America, and Asia - and conclusions for Africa Portland cement, as we know it today, has its origin in Great Britain approximately 170 years ago. Since then, concrete technology has spread out to Europe, the United States, and Japan, where it became a key component for rapid industrial development. Europe, the Unites States and many Asian countries today have developed a high level of technology regarding concrete construction. However, each of them has a unique history and as a result, different "concrete philosophy" depending upon the social, environmental and financial boundary conditions, as well as their evolution throughout the years and local construction traditions. As a result, the word concrete may refer to rather different materials in America, Europe, and Asia. Apart from South Africa, most sub-Saharan African countries cannot look back on a similarly long cement and concrete history. Cement and concrete are rather new materials and not yet well established. This gives African engineers the unique opportunity to learn from past mistakes and to develop a concrete technology, which refers to the best available practice. However, in many sub-Saharan African countries, standards and regulations are adopted (preferably from Europe or the US) without consideration of the historical background of these standards. Although this practice helps saving resources for the implementation, it does not necessarily yield the best result in the African environment, and also from an economic point of view it might come back disadvantageously due to unnecessary overdesigning. By comparing the differing states-of-the-art in North America, Europe, and Asia, this paper emphasizes, how regional conditions determine the practice of concrete technology in the sub-Saharan area. It is therefore important for Africa to develop a unique African concrete technology, which is perfectly fitted to the specific local conditions, even if it may vary distinctively from the established practice elsewhere. The paper concludes that African nations should effort into adapting existing principles that have proved to function well rather than adopting existing standards. Bundesanstalt für Materialforschung und -prüfung (BAM) 2013 ACCTA - International conference on advances in cement and concrete technology in Africa 2013 (Proceedings) 978-3-9815360-3-4 ACCTA - International conference on advances in cement and concrete technology in Africa 2013 Johannesburg, South Africa 28.01.2013 30.01.2013 1139 1147 2016-02-20 OPUS4-40974 Beitrag zu einem Tagungsband Schmidt, Wolfram Priebe, Nsesheye Susan; Schmidt, Wolfram Why Africa can spearhead innovative and sustainable cement and concrete technologies globally The perception of concrete in the society as well as in the politics is rather negative. This becomes obvious in the fact that the phrase "concrete jungle" has become synonym for hapless living with no perspectives. In politics and research funding, it is also not easy to create a broader audience, since concrete is falsely considered as old-fashioned material that is sufficiently understood today and does not need further considerations, particularly compared to allegedly newer materials. However, particularly since the last two decades the technology has completely changed. Binders of today are no more the same binders as used before, and concrete mixture compositions of today diverge quite significantly from compositions in the past. There is little understanding world-wide about that. This causes that potentials the concrete technology bears are wasted. In the broadly found opinion that concrete is old-fashioned and ugly, it is ignored that architectural sins are not inherent to the material, which actually is extremely versatile and CO2-friendly compared to all other construction materials available. It is also ignored that 98% of the outer Earth's crust are made of the elements cement and concrete are made from, and therefore it will be an illusion to believe that the complementary 2% can create materials to develop regions and infrastructures in less developed areas in the world. For betterment in Africa the infrastructural development should have highest priority, since poor connections between settlements are responsible for enormous Price increases [2], and urban traffic congestion is responsible for an incredible loss of productivity. It is not unrealistic to assume that earners that are dependent on a car get stuck in traffic about 3-4 hours per day in cities like Lagos, Nairobi or Dar es Salaam. However, the traffic congestions do not only affect the car owners negatively but the living of the entire urban population every day. Besides infrastructure, housing should be the other priority, since a large part of the African population does not live in adequate condition. This is a societal problem, since unequal Distribution of wealth is a major driving force for instability in societies. The latter has a global impact, since 8 many phenomena that can be observed all over the world such as political radicalism, xenophobia, terrorism, and migration can often be linked to instable societies. However, the importance of infrastructure has an even wider range. Most African countries go through a change process recently. In order to strengthen very positive perspectives, the focus in politics and research funding is put on issues such as agriculture, energy, and health, which are without doubt extremely important issues. However, it is typically overlooked that all enhancements in these areas can only become effective, when an infrastructure is created to support the implementation of better concepts. Mobility is the key to a prosperous future, and mobility can only be granted by infrastructural construction activities. Hence, compared to many other regions in the world, cement and concrete technologies have a significantly higher relevance in Africa. Berlin Bundesanstalt für Materialforschung und -prüfung (BAM) 2016 Proceedings of the 2nd symposium knowledge exchange for young scientists (KEYS) - Valorisation of industrial by-products for sustainable cement and concrete construction - Improvement of solid waste management 2 978-3-9817853-1-9 2nd Symposium on Knowledge Exchange for Young Scientists (KEYS) Accra, Ghana 7.6.2016 9.6.2016 7 19 2017-07-14 OPUS4-57375 Zeitschriftenartikel Kruschwitz, Sabine; Munsch, Sarah; Telong, Melissa; Schmidt, Wolfram; Bintz, Thilo; Fladt, Matthias; Stelzner, Ludwig The NMR core analyzing TOMograph: A multi-functional tool for non-destructive testing of building materials NMR is becoming increasingly popular for the investigation of building materials as it is a non-invasive technology that does not require any sample preparation nor causes damage to the material. Depending on the specific application it can offer insights into properties like porosity and spatial saturation degree as well as pore structure. Moreover it enables the determination of moisture transport properties and the (re-)distribution of internal moisture into different reservoirs or chemical phases upon damage and curing. However, as yet most investigations were carried out using devices originally either designed for geophysical applications or the analysis of rather homogeneous small scale (< 10 mL) samples. This paper describes the capabilities of an NMR tomograph, which has been specifically optimized for the investigation of larger, heterogeneous building material samples (diameters of up to 72 mm, length of up to 700 mm) with a high flexibility due to interchangeable coils allowing for a high SNR and short echo times (50 - 80 m s). Elsevier B.V. 2023 Magnetic Resonance Letters 1 13 urn:nbn:de:kobv:b43-573755 10.1016/j.mrl.2023.03.004 https://creativecommons.org/licenses/by-nc-nd/4.0/deed.de 2023-04-26 OPUS4-27756 Beitrag zu einem Tagungsband Akindahunsi, A. A.; Schmidt, Wolfram; Uzoegbo, H.C.; Iyuke, S.E. Uzoegbo, H.C.; Schmidt, Wolfram The influence of starches on some properties of concrete Starches and its derivatives are known to exhibit viscosity modifying characteristics. In an ongoing work, the influence of com and cassava starches on some properties of concrete such as compressive strength, heat of hydration and creep are examined. Various percentages (0.0, 0.5, 1.0, 1.5 and 2 %) of starches by weight of cement were added to concrete mixes prepared in the laboratory. Preliminary results of compressive strengths showed that both starches have some positive impact (e.g. there was 5.3 % increase in strength due to a 1 % addition of com starch by weight of cement in comparison to the control while cassava starch of the same percentage gave 4.9 % increase in strength) at certain percentages of starch addition to concrete at 28 days. The creep and hydration results shows the starch additions compares well and in some instance performs better. Bundesanstalt für Materialforschung und -prüfung (BAM) 2013 ACCTA - International conference on advances in cement and concrete technology in Africa 2013 (Proceedings) 978-3-9815360-3-4 ACCTA - International conference on advances in cement and concrete technology in Africa 2013 Johannesburg, South Africa 28.01.2013 30.01.2013 637 645 2016-02-20 OPUS4-47045 Zeitschriftenartikel Schmidt, Wolfram; Mota, Berta; Ramirez Caro, Alejandra The action of aggregates on concrete rheology Most factors acting on concrete rheology work at an extremely small-scale level. Influencing factors in the millimetre or centimetre area are essentially restricted to sand and aggregates. The latter, however, make up 50 to 70% of the total volume of most concretes - a fact often ignored in research on controlling concrete processing properties. Whereas suitably chosen concrete admixtures and additives can influence rheology in a very targeted manner, sand and aggregates are less suitable for controlling rheology but nonetheless contribute to the rheology of the Overall system. The actions of sand and aggregate can impose themselves upon the actions of admixtures and additives and, in unfavourable circumstances, even render them redundant. For this reason, any results concerning the processability of binding agent systems can only be transferred to concrete with great care. It is important to better understand the action of sand and aggregates in order to be able to harmonise them in such a way that they complement the action of superplasticisers positively, instead of working against them. Savings on costs can also be made by this targeted fine-tuning. Cologne ad-media GmbH 2018 CPI - Concrete Plant International 3 42 49 2018-12-17 OPUS4-26429 Zeitschriftenartikel Schmidt, Wolfram Start of round-robin test for cement testing in Africa / Start für Ringversuch zur Zementprüfung in Afrika Gütersloh Bauverl. 2012 BFT international 08 54 55 2016-02-19 OPUS4-30948 Zeitschriftenartikel Schmidt, Wolfram; Sonebi, M.; Brouwers, H.J.H.; Kühne, Hans-Carsten; Meng, Birgit Rheology modifying admixtures: The key to innovation in concrete technology - a general overview and implications for Africa Innovative admixture technology has significantly widened up the ränge of possibilities of concrete engineers. For many decades the water to cement ratio (w/c) was the major influencing factor for the performance of concrete. Due to the need to adjust a consistency, which still allowed reasonable workability, the w/c was typically significantly higher than technologically reasonable. Rheology modifying admixtures Support adjusting the concrete consistency largely independent of the w/c. It was only after the invention of the first superplasticizers that modern concrete technology significantly evolved in terms of flowability, strength, and durability, and only due to the steady evolution of the technology modern innovations, such as Self-Compacting Concrete, Ultra-High-Performance Concrete, or Engineered Cementitious Composites were made possible. Today's superplasticizers are extremely versatile and can be adjusted to individual technologicalspecifications. However, the other side of the coin of versatility is that cementitious Systems incorporating superplasticizers have become more sensitive against environmental influences, such as the environmental temperature, which may cause unwanted effects or demand for supplementary admixture use such as stabilizing admixtures. Hence, concrete mixture composition with admixtures demands for a high level of expertise and offen there is lack of awareness about the mode of Operation of rheology modifying admixtures among concrete technologists. The paper gives a comprehensive overview about rheology modifying admixtures such as superplasticizers or stabilizing agents, and how they can be used depending upon the application in the most favourable way. Based on experiences with the sub-Saharan African concreting boundary conditions, which exhibit many challenges in terms of environmental boundary conditions and construction site logistics, conclusions are finally drawn, how admixtures can be used in the most beneficial way to improve the concrete casting Situation. New York, NY, USA International Institute for Conservation of Historic and Artistic Works 2013 Chemistry and Materials Research 5 115 120 2016-02-20 OPUS4-40979 Vortrag Schmidt, Wolfram Promising bio-based rheology modifying agents for concrete Today, concrete engineers can vary consistencies between very stiff and self-compacting. The possibility to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young's modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology of concrete systems can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere, and particularly in Africa, the effective use of chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in Africa it is difficult to use them, due to lacking local supply and supply infrastructure. For Africa, concrete admixtures are largely shipped or transported from Europe, the Arabian Peninsula, or Asia. The long distance transportation of chemicals is not very environmentally friendly and the economic consequences are dramatic: the agents are difficult to purchase, expensive, and there is not a large variety of products available in the market. However, bio-based chemicals have been used in construction for ages effectively. Due to the enormous relevance of rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of chemicals that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in most countries in Africa. However, alternatives are available, which can be found in many regions. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. 2016 Rheologie komplexer Fluide: Theorie, Experiment und Anwendung, DRG/ProcessNet | Gemeinsame Diskussionstagung Berlin, Germany 13.3.2017 2017-07-14 OPUS4-41031 Vortrag Schmidt, Wolfram Promising bio-based material solutions for more sustainable concrete Today, concrete engineers can vary consistencies between very stiff and self-compacting. At the same time engineers can opt for a vast variety of binders. The possibility to use optimised mineral binders and to tailor rheological properties of concrete eventually opened up the path to multiple new technologies, where design criteria are no longer limited to the Young's modulus and the compressive strength, but often comprise additional added value. It can therefore be concluded that the capability to control the rheology and the interactions particles can be considered as the catalyst for concrete innovations such as polymer modified cementitious composites (PCC) self-compacting concrete (SCC), high-performance concrete (HPC), ultra-high performance concrete (UHPC) or strain hardening cement based composites (SHCC). In the same way rheology modifying additions, SCMs and admixtures will become key parameters in mastering the challenges of the next decades such as: - Additive manufacturing/3D-printing - Overcoming pumping height limitations - Casting at extreme temperatures - Tailored rheology at delivery In many regions in the Southern hemisphere the effective use of SCMs, additions and chemical admixtures for concrete could significantly contribute to solve problems induced by the challenging climatic conditions, but particularly in many countries with challenging climatic conditions, it is difficult to use them, due to lacking local supply and supply infrastructure, and often the awareness of the value of local mineral resources is missing. However, the long distance transportation of mineral resources and chemicals is not very environmentally friendly and the economic consequences are dramatic. However, bio-based constituents and chemicals have been used in construction for ages effectively. Due to the enormous relevance of binders, fillers and rheology modifying admixtures it is worthwhile to recollect that nature provides an enormous variety of products that can be used readily or with low processing. Today, the use of petrol based polycarboxylate ether superplasticizers has become quite common in concrete technology due to their versatility, but their uncomplicated and cost efficient availability is limited in many countries in the world. However, alternatives are available, which can be found locally. In addition many agricultural wastes today are dumped, although they could be converted to reactive ashes easily. Plant extracts have been used to modify the properties of concrete for long time. These plants are typically regionally abundantly available, cheap, and they are environmental friendly. They do not require special caring for seedlings, weeding or manuring to grow since they grow wildly. The talk will present an overview of various options for binders, fillers and rheology modifying admixtures, that can be found in nature, and that may become a real alternative, once their interaction within the complex cementitious system is well understood. 2017 Peak Forum on Sustainable Civil Engineering Materials Shanghai, China 18.05.2017 18.05.2017 2017-07-17 OPUS4-40977 Beitrag zu einem Tagungsband Schmidt, Wolfram Banjad Pecur, Ivana; Baricevic, Ana; Stirmer, Nina; Bjegovic, Dubravka Potentials for sustainable cement and concrete technologies - Comparison between Africa and Europe The fundamental knowledge about cement and concrete has made enormous progress over the last decades, and today it would be possible to find optimised sustainable concrete solutions tailored for every given boundary framework and raw material supply. However, this knowledge barely finds implementation into practice despite the urgent global need to minimise carbon emissions and energy consumption. A major reason is that most concrete developments were historically made in the northern hemisphere, where today over-regulations and stagnating market perspectives slow down innovation drive towards higher sustainability. In most African countries, however, sustainable building is simply an urgent real-life problem. The demand for building is enormous, Standard solutions are not an option, and the pool of innovative local raw materials and concrete concepts is enormous. The paper provides a comprehensive comparison between the boundary frameworks of Europe and Africa, and it is explained why local African solutions shall be given priority over imported solutions. Examples of local African concrete solutions are given, and ideas for a rapid implementation are developed. Most of the potentially useful materials such as agricultural ashes, natural and calcined pozzolans, polysaccharides, etc. have not yet been subject to intensive research to date. Therefore, it is not unlikely to assume that with an open mind for non-Standard solutions, combined with creativity and particularly knowledge and awareness, the next generation of innovative and sustainable concretes will be developed and applied on the African continent. Therefore, the conclusion is that particularly the African continent provides the best starting position to develop better and more sustainable concrete solutions than anywhere else in the world. Hence, Africa can become a global pioneer in green cement and concrete technology with impact to the entire world. Zagreb, Croatia University of Zagreb 2017 Proceedings of the 1st International Conference on Construction Materials for a Sustainable Future 978-953-8168-04-8 1st International Conference on Construction Materials for a Sustainable Future Zadar, Croatia 19.4.2017 21.4.2017 829 835 2017-07-14