Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-29110 Beitrag zu einem Tagungsband Qiao, Linan; Kasparek, Eva Maria; Völzke, Holger; Zencker, Uwe; Scheidemann, Robert Development of a finite element model for damping concrete under severe impact loads Finite element analysis (FEA) has been carried out for investigation of damping concrete under different impact loading conditions with a built-in material model and damage criteria available in FEA code ABAQUS. At first, all parameters for the selected material model had been derived from compression Tests of cubic specimens. After that, a validation was carried out with different static and dynamic penetration tests. Finally, a 5 meter real drop test with a 23 Mg cylindrical cask could successfully be simulated. Omnipress Institute of Nuclear Materials Management (INMM) 2013 PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials (Proceedings) PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials San Francisco, CA, USA 18.08.2013 23.08.2013 Session D, Paper 127, 1 10 2016-02-20 OPUS4-23708 Beitrag zu einem Tagungsband Kasparek, Eva Maria; Scheidemann, Robert; Zencker, Uwe; Wolff, Dietmar; Völzke, Holger Effect of dynamic loading on compressional behavior of damping concrete In drop test scenarios related to assessing and licensing the storage procedure of spent fuel and high active waste, the casks under examination are generally not equipped with impact limiters. Hence, the extent of mechanical stresses in case of an assumed handling accident is largely affected by the ground properties of the reception hall floor in the specific storage facility. Unlike conventional brittle foundation materials, damping concrete performs quite well in such applications as it features high stiffness as well as high energy absorption due to the filler pore volume. However, its damping ability is not sufficiently exploited in current finite element (FE) calculations due to a lack of advanced material models for simulating its impact response. An implementation of qualified concepts that account for plastic, strain rate dependent behavior requires additional information that has to be provided by systematic test series. BAM recently started a research project to generate such data, subsequently to develop and to improve numerical methods for the analysis of impact limiters and damping foundation material and thus to optimize safety assessment tools for the design of transport and storage casks. A major part of this research concerns dynamic compression tests of variably shaped specimens conducted at a servo hydraulic 1MN impact testing machine as well as at a BAM facility for guided drop tests. This presentation focuses 100mm damping concrete cubes deformed vertically at constant rates under different constraint conditions. For example, a special fitting jig was constructed to subject the specimens to multi-axial loading. Thereby a deformation of 60% could be applied. Simulation was conducted by FE code ABAQUS™ based on material models “Concrete damaged plasticity” and “Crushable foam” which both allow defining rate sensitive nonlinear stress-strain relations in compression beyond the classic metal plasticity approach. PATRAM 2010 PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials (Proceedings) PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials London, UK 2010-10-03 2010-10-08 1-8 (Thursday-T40-114) 2016-02-19 OPUS4-26270 Beitrag zu einem Tagungsband Kasparek, Eva Maria; Völzke, Holger; Scheidemann, Robert; Zencker, Uwe Numerical and experimental investigations of polyurethane foam for use as cask impact limiter in accidental drop scenarios 2012 WM2012 Conference - Improving the future in waste management (Proceedings) 978-0-9836186-1-4 WM2012 - Waste management conference Phoenix, AZ, USA 2012-02-26 2012-03-01 Paper 12099 1 9 2016-02-19