Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-55037 Posterpräsentation Meyer, Klas Compact NMR Spectroscopy in the field: A Versatile Tool for Automated Continuous-Flow Production Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated "chemical" process control along with real-time quality control are prerequisites to such concepts and thus should be based on "chemical" information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as, e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis tool, which even served as reliable reference method for further PAT applications (e.g. NIR spectroscopy). In the future, such fully integrated and intelligently interconnecting "smart" systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. 2022 DECHEMA Workshop "Sensorik für die Digitalisierung chemischer Produktionsanlagen" Frankfurt am Main, Germany 13.06.2022 13.06.2022 2022-06-15 OPUS4-55260 Zeitschriftenartikel Wander, Lukas; Lommel, Lukas; Braun, Ulrike; Meyer, Klas; Paul, Andrea Development of a Low-Cost Method for Quantifying Microplastics in Soils and Compost Using Near-Infrared Spectroscopy Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and highthroughput mass quantification of microplastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermoanalytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83-104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1-10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. Bristol IOP Publishing Ltd. 2022 Meas. Sci. Technol. 33 7 1 13 urn:nbn:de:kobv:b43-552605 10.1088/1361-6501/ac5e5f https://creativecommons.org/licenses/by/4.0/deed.de 2022-07-14 OPUS4-56090 Posterpräsentation Meyer, Klas Compact NMR Spectroscopy in the field: A Versatile PAT Tool for Production of Specialty Chemicals Companies of chemical industry find themselves more often in a rapidly changing environment, e.g., due to variability of raw material quality or energy costs and efficiency. Process optimization and new process concepts become more and more important. For example, flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds like exothermic reactions with high heat dissipation. Therefore, fully automated "chemical" process control along with real-time quality control are prerequisites to such concepts and thus should be based on "chemical" information. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as explosion safety, field communication, and robust evaluation of sensor data. Field studies in modular and conventional production plant setups show promising results gaining process knowledge for further optimization. NMR appeared as preeminent online analytical method and allow using a modular data analysis approach, which can even serve as reliable reference method for further calibration-dependent PAT applications (e.g., NIR spectroscopy). Based on experiences from these field studies an improved analyzer enclosure setup was developed and built, including the option of a secondary method besides NMR spectroscopy. Integrated control systems allow for a flexible implementation based on the available automation infrastructure at the chemical plant or pilot plant setup. In the future, fully integrated and intelligently interconnecting "smart" PAT systems and processes have the potential speed up the setup of production equipment for chemicals and pharmaceuticals and therefore help to reduce the time-to-market. 2022 Practical Applications of NMR in Industry Conference (PANIC) 2022 La Jolla, CA, USA 16.10.2022 19.10.2022 2022-10-25 OPUS4-56452 misc Tchipilov, Teodor; Meyer, Klas; Weller, Michael G. Quantitative 1H Nuclear Magnetic Resonance (qNMR) of Aromatic Amino Acids for Protein Quantification qNMR is a valuable technique for metrological studies due to the uniformity of its signal response for all chemical species of an isotope of interest, which enables compound-independent calibration. However, protein quantification remained challenging as large molecules produce wide, low-intensity signals that reduce the already low sensitivity. Combining qNMR with the hydrolysis of protein samples into amino acids circumvents many of these issues and facilitates the use of NMR spectroscopy for absolute protein and peptide quantification.In this work, different conditions have been tested for quantifying aromatic amino acids and proteins. First, we examined the pH-based signal shifts in the aromatic region. The preferable pH depends on the selection of the amino acids for quantification and which internal standard substance should be used to avoid peak overlap. Several aromatic compounds, such as terephthalic acid, sulfoisophthalic acid, and benzene tricarboxylic acid, have been applied as internal standards. The quantification of amino acids from an amino acid standard, as well as from a certified reference material (bovine serum albumin), was performed. Using the first two suggested internal standards, recovery was ~ 97 % for histidine, phenylalanine, and tyrosine at a concentration of approximately 1 mM in solution. Acidic hydrolysis of a certified reference material (CRM) of bovine serum albumin (BSA) and subsequent quantification of Phe and Tyr yielded recoveries of 98 ± 2 and 88 ± 4 %, respectively, at a protein concentration of 16 g/L or 250 µM. Basel MDPI 2022 Preprints 1 13 urn:nbn:de:kobv:b43-564520 10.20944/preprints202211.0569.v1 https://creativecommons.org/licenses/by/4.0/deed.de 2022-12-05 OPUS4-54640 Zeitschriftenartikel Wander, Lukas; Lommel, Lukas; Meyer, Klas; Braun, Ulrike; Paul, Andrea Development of a low-cost method for quantifying microplastics in soils and compost using near-infrared spectroscopy Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and high-throughput mass quantification of micro¬plastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermo-analytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83-104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1-10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. UK IOP Publishing Ltd. 2022 Measurement Science and Technology 33 7 075801 075814 urn:nbn:de:kobv:b43-546405 10.1088/1361-6501/ac5e5f https://creativecommons.org/licenses/by/4.0/deed.de 2022-04-13 OPUS4-54188 Zeitschriftenartikel Westwood, S.; Martos, G.; Josephs, R.; Choteau, T.; Wielgosz, R.; Davies, S.; Moawad, M.; Tarrant, G.; Chan, B.; Alamgir, M.; de Rego, E.; Wollinger, W.; Garrido, B.; Fernandes, J.; de Sena, R.; Oliveira, R.; Melanson, J.; Bates, J.; Mai Le, P.; Meija, J.; Quan, C.; Huang, T.; Zhang, W.; Ma, R.; Zhang, S.; Hao, Y.; He, Y.; Song, S.; Wang, H.; Su, F.; Zhang, T.; Li, H.; Lam, W.; Wong, W.; Fung, W.; Philipp, Rosemarie; Dorgerloh, Ute; Meyer, Klas; Piechotta, Christian; Riedel, Juliane; Westphalen, Tanja; Giannikopoulou, P.; Alexopoulos, Ch.; Kakoulides, E.; Kitamaki, Y.; Yamazaki, T.; Shimizu, Y.; Kuroe, M.; Numata, M.; Pérez-Castorena, A.; Balderas-Escamilla, M.; Garcia-Escalante, J.; Krylov, A.; Mikheeva, A.; Beliakov, M.; Palagina, M.; Tkachenko, I.; Spirin, S.; Smirnov, V.; Tang Lin, T.; Pui Sze, C.; Juan, W.; Lingkai, W.; Ting, L.; Quinde, L.; Yizhao, C.; Lay Peng, S.; Fernandes-Whaley, M.; Prevoo-Franzsen, D.; Quinn, L.; Nhlapo, N.; Mkhize, D.; Marajh, D.; Chamane, S.; Ahn, S.; Choi, K.; Lee, S.; Han, J.; Baek, S.; Kim, B.; Marbumrung, S.; Jongmesuk, P.; Shearman, K.; Boonyakong, C.; Bilsel, M.; Gündüz, S.; Ün, I.; Yilmaz, H.; Bilsel, G.; Gökēen, T.; Clarkson, C.; Warren, J.; Achtar, E. Mass fraction assignment of Bisphenol-A high purity material The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. IOP Publishing Bureau International des Poids et Mesures (BIPM) 2021 Metrologia 58 1A 08015 10.1088/0026-1394/58/1A/08015 2022-01-05 OPUS4-53941 Zeitschriftenartikel Fricke, F.; Brandalero, M.; Liehr, Sascha; Kern, Simon; Meyer, Klas; Kowarik, Stefan; Hierzegger, R.; Westerdick, S.; Maiwald, Michael; Hübner, M. Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Using a Novel Data Augmentation Method Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are valuable analytical and quality control methods for most industrial chemical processes as they provide information on the concentrations of individual compounds and by-products. These processes are traditionally carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been realized to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra, to train an ANN with better prediction performance and speed than state-of-the-art analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. IEEE 2021 Transactions on Emerging Topics in Computing 10 1 87 98 urn:nbn:de:kobv:b43-539412 10.1109/TETC.2021.3131371 https://creativecommons.org/licenses/by/4.0/deed.de 2021-12-08 OPUS4-53776 Vortrag Meyer, Klas Modular process control with compact NMR spectroscopy - From field integration to automated data analysis Chemical companies must find new paths to stay productive in a rapidly changing environment. One of these is the potential of digital technologies. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce time to market. Process safety is improved due to smaller amounts processed and the abilities of efficient heat-transfer allow for otherwise difficult-to-produce compounds. To exploit these advantages, a fully automated process control along with real-time quality control is mandatory and should be based on "chemical" information. The advances of a fully automated NMR analyzer were demonstrated, using a given pharmaceutical reaction step operated within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the requirements of an automated chemical production environment such as explosion safety, field communication, and robust data evaluation. Obtained results were used for direct loop advanced process control and real-time optimization of the process. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further PAT applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated.Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting "smart" systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. 2021 5th European Conference on Process Analytics and Control Technology (EuroPACT) Online meeting 15.11.2021 17.11.2021 2021-11-19 OPUS4-53777 Posterpräsentation Meyer, Klas Industrial Applications of Low-Field NMR Spectroscopy for Process and Quality Control of Silanes The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to bonding-imparting properties in the glass fiber industry, for sealants and adhesives, for coatings and paints to the modification of polymer materials. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control [1]. Interesting NMR nuclei for the above-mentioned products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated based on various case studies. In the course of the case studies it was shown how low-field NMR spectroscopy extends the application range of chemical analysis to new applications where existing technologies such as NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to lack of reference data. 2021 5th European Conference on Process Analytics and Control Technology (EuroPACT) Online meeting 15.11.2021 17.11.2021 2021-11-19 OPUS4-52557 Vortrag Meyer, Klas Industrial Applications of benchtop NMR Spectroscopy for Quality Control of Silanes The combination of different silanes as starting materials and as a product of hydrolysis by several alcohols or water creates a range of hundreds of technical products for a wide range of applications. In recent years, functional trialkoxysilanes have proven to be multi-purpose organosilanes. Applications range from weather protection of buildings to additives for glass fiber industry, sealants, adhesives, coatings and paints to the modification of polymers. Commercial benchtop NMR spectrometers have the potential to be used in silane chemistry as an online method for reaction monitoring and quality control. NMR nuclei of interest for silane products are 1H and 29Si. In a joint research cooperation between EVONIK and BAM, the applicability of low-field NMR spectroscopy for the chemical analysis of silanes was evaluated. It was shown how it can extend the application range where existing technologies like NIR, Raman, UV/VIS, etc. cannot be used quantitatively due to a lack of reference data. In a first case study the process of hydrolysis and condensation was observed using online NMR analysis. For this purpose, the substituents of a trialkoxysilane are first hydrolyzed by adding water and corresponding silanols are formed, which can then bind to materials via SiOH functions and crosslink to form siloxane units. Another case study was dealing with the kinetics of the cleavage of a cyclic silane compound. Online NMR analysis was used both in the laboratory and in the manufacturing plant. For this purpose, a fully automated containment system was used, which enables the use of a commercial NMR spectrometer in ATEX-environments. In the third case study presented, quantitative 1H-NMR spectra were acquired on product mixtures of a trialkoxysilane and other components such as organic stabilizers, organotin compounds, an aromatic amine and organic peroxides. An automatic evaluation method based on Indirect Hard Modeling (IHM) was developed. 2021 Magritek's Spinsolve NMR Users Meeting 2021 Online meeting 20.04.2021 28.04.2021 2021-05-03