Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-47857 Zeitschriftenartikel Köppen, Robert; Kroh, L.W.; Lörchner, Dominique 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione: kinetic studies and phototransformation products 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) is an emerging brominated flame retardant which is widely used in several plastic materials (electric and electronic equipment, musical instruments, automotive components). However, until today, no photochemical studies as well as the identification of possible phototransformation products (PTPs) were described in literature. Therefore, in this study, UV-(C) and simulated sunlight irradiation experiments were performed to investigate the photolytic degradation of TDBP-TAZTO and to identify relevant PTPs for the first time. The UV-(C) Irradiation experiments show that the photolysis reaction follows a first-order kinetic model. Based on this, the photolysis rate constant k as well as the half-life time t1/2 were calculated to be k = (41 ± 5 ×10−3) min−1 and t1/2=(17±2) min. In comparison, a minor degradation of TDBP-TAZTO and no formed phototransformation products were obtained under simulated sunlight. In order to clarify the photochemical behavior, different chemicals were added to investigate the influence on indirect photolysis: (i) H2O2 for generation of hydroxyl radicals and (ii) two quenchers (2-propanol, sodium azide) for scavenging oxygen species which were formed during the irradiation experiments. Herein, nine previously unknown PTPs of TDBP-TAZTO were detected under UV-(C) irradiation and identified by HPLC-(HR)MS. As a result, debromination, hydroxylation, and dehydrobromination reactions could be presumed as the main degradation pathways by high-resolution mass spectrometry. The direct as well as the OH radical-induced indirect photolysis were observed. Springer 2019 Environmental Science and Pollution Research 26 16 15838 15846 10.1007/s11356-019-04815-w 2019-04-24 OPUS4-46488 Zeitschriftenartikel Lörchner, Dominique; Kroh, L.W.; Köppen, Robert First insights into electrochemical transformations of two triazine-based brominated flame retardants in model systems In this work, a study of electrochemical conversion was performed to elucidate different degradation pathways of the heterocyclic brominated flame retardants 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) and 2,4,6-Tris-(2,4,6-tribromo-phenoxy)-1,3,5-triazine (TTBP-TAZ). EC/MS was used to simulate the (bio)-transformation processes and to identify possible transformation products (TPs) which have never been reported before. For TDBP-TAZTO, six new TPs were observed after the electrochemical oxidation (applied potential of 0 to 1,800 mV vs. Pd/H2). In case of TTBP-TAZ, seven debromination products were generated with an applied potential of 0 to 2,200 mV vs. Pd/H2. The main degradation pathways confirmed by high resolution mass spectrometry for both compounds were hydroxylation, debromination as well as dehydrobromination. Cambridge Royal Society of Chemistry 2018 Analytical methods 10 43 5164 5170 10.1039/c8ay01968a 2018-11-07 OPUS4-51685 Zeitschriftenartikel Lörchner, Dominique; Tang, Ductri; Mauch, Tatjana; Jung, Christian; Hofmann, Andrea; Kroh, L.W. Development and validation of a liquid chromatography-mass spectrometry method for simultaneous analysis of triazine-based brominated flame retardants in environmental samples In the present study, a novel and reliable analytical method was developed and validated for the simultaneous determination of 1,3,5-tris(2,3-dibromopropyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TDBP-TAZTO) and 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine (TTBP-TAZ) in environmental samples using high-performance liquid chromatography coupled to a tandem mass spectrometer. Firstly, for optimization of the liquid chromatography separation, mobile phases, oven temperatures, modifiers, and buffers were varied. Afterwards, the extraction efficiency of sediment and fish samples was tested with different techniques (pressurized liquid, solid-liquid, ultrasound-assisted, and Soxhlet extraction). Additionally, cleanup using modified multilayer silica gel (sediment) and gel permeation chromatography as well as Florisil® columns (fish) with several solvent mixtures were performed. The best results were obtained with the pressurized liquid extraction (optimal conditions: extraction solvent 100% toluene, extraction time 20 min, cycles two, extraction temperature 100 °C, and flushing volume 60%) compared to other solvent extraction methods. On the basis of this optimized analytical procedure, the method was validated with satisfactory values of correlation coefficient (R2) between 0.998 and 0.999 for both matrices in the calibration range of 2.0-502.0 μg kg−1 for TDBP-TAZTO and 16.6-770.6 μg kg−1 for TTBP-TAZ in sediment samples as well as 4.8-303.5 μg kg−1 and 47.4-742.5 μg kg−1 in fish samples (bream), respectively.Mean recoveries (n=5) were calculated for both analytes with spiked matrices at one concentration level (100 μg kg−1) between 98 and 114% with intra-day relative standard deviations less than 11%. The inter-day precision (n = 15) was also acceptable for both compounds < 11%. It was found that the limit of detection and limit of quantification were in the range of 0.4-1.3 μg kg−1 for TDBP-TAZTO and 10-28 μg kg−1 for TTBP-TAZ in surface sediment samples and 7-25 μg kg−1 and 22-80 μg kg−1 in fish samples (bream), respectively. The results indicated that these analytical methods could provide reliable and efficient approaches for quantification of TDBP-TAZTO and TTBPTAZ in sediment and fish samples. Springer 2020 Analytical and Bioanalytical Chemistry 413 4 987 998 10.1007/s00216-020-03057-x 2020-12-02