Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-40229 Beitrag zu einem Tagungsband Kern, Simon; Guhl, Svetlana; Meyer, Klas; Paul, Andrea; Wander, Lukas; Gräßer, Patrick; Maiwald, Michael Design and Validation of a Compact NMR Analyser Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. Intensified continuous processes are in focus of current research. Flexible (modular) chemical plants can produce different products using the same equipment with short down-times between campaigns and quick introduction of new products to the market. In continuous flow processes online sensor data and tight closed-loop control of the product quality are mandatory. If these are not available, there is a huge risk of producing large amounts of out-of-spec (OOS) products. This is addressed in the European Unionʼs Research Project CONSENS (Integrated Control and Sensing) by development and integration of smart sensor modules for process monitoring and control within such modular plant setups. The presented NMR module is provided in an explosion proof housing of 57 x 57 x 85 cm module size and involves a compact 43.5 MHz NMR spectrometer together with an acquisition unit and a programmable logic controller for automated data preparation (phasing, baseline correction) and evaluation. Indirect Hard Modeling (IHM) was selected for data analysis of the low-field NMR spectra. A set-up for monitoring continuous reactions in a thermostated 1/8" tubular reactor using automated syringe pumps was used to validate the IHM models by using high-field NMR spectroscopy as analytical reference method. Frankfurt a. M. DECHEMA e. V., Frankfurt 2017 Processdings of 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) Potsdam, Germany 10.05.2017 12.05.2017 72 73 2017-05-15 OPUS4-38841 Beitrag zu einem Tagungsband Kern, Simon; Gräßer, Patrick; Zientek, Nicolai; Maiwald, Michael First steps towards field integration of benchtop NMR spectroscopy for online monitoring and process control Online monitoring and process control requires fast and noninvasive analytical methods, which are able to monitor the concentration of reactants in multicomponent mixtures with parts-per-million resolution. Online NMR spectros-copy can meet these demands when flow probes are directly coupled to reactors, since this method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical com-parison method being independent on the matrix. Due to improved magnet design and field shimming strategies portable and robust instruments have been introduced to the market by several manufacturers during the last few years. First studies with this technology showed promising results to monitor chemical reaction in the laboratory. 2015 Tagungsband - 11. Kolloquium Arbeitskreis Prozessanalytik 11. Kolloquium Arbeitskreis Prozessanalytik Wien, Austria 30.11.2015 02.12.2015 43 44 urn:nbn:de:kobv:b43-388411 https://creativecommons.org/licenses/by-nc-sa/4.0/deed.de 2016-12-29 OPUS4-43252 Beitrag zu einem Tagungsband Maiwald, Michael; Gräßer, Patrick; Wander, Lukas; Guhl, Svetlana; Meyer, Klas; Kern, Simon Innen hui und außen pfui - Smarte Prozess-Sensoren in der gegenwärtigen Automatisierungslandschaft der Prozessindustrie Der Wandel von der aktuellen Automation zum smarten Sensor ist im vollen Gange. Automatisierungstechnik, sowie die Informations- und Kommunikationstechnik (IKT) verschmelzen zunehmend. Eine Topologie für smarte Sensoren, die das Zusammenwirken mit daten- und modellbasierten Steuerungen bis hin zur Softsensorik beschreibt gibt es bis heute jedoch noch nicht. Um zu einer störungsfreien Kommunikation aller Komponenten auf Basis eines einheitlichen Protokolls zu kommen sollte die Prozessindustrie die Weichen für eine smarte und sichere Kommunikationsarchitektur stellen. Sie verwehrt stattdessen die Entwicklungen ihrer Zulieferer und wartet lieber ab. Der Beitrag greift die Anforderungen der Technologie-Roadmap „Prozess-Sensoren 4.0" auf und zeigt Möglichkeiten zu ihrer Realisierung am Beispiel eines Online-NMR-Analysators, der im Rahmen eines EU-Projekts entwickelt wurde. Berlin AMA Service GmbH AMA Verband für Sensorik und Messtechnik e.V. 2017 Tagungsband 13. Dresdner Sensor-Symposium 978-3-9816876-5-1 13. Dresdner Sensor Symposium Dresden, Germany 04.12.2017 06.12.2017 61 66 10.5162/13dss2017/2.1 2017-12-07 OPUS4-44847 Zeitschriftenartikel Kern, Simon; Meyer, Klas; Guhl, Svetlana; Gräßer, Patrick; Paul, Andrea; King, R.; Maiwald, Michael Online low-field NMR spectroscopy for process control of an industrial lithiation reaction—automated data analysis Monitoring specific chemical properties is the key to chemical process control. Today, mainly optical online methods are applied, which require time- and cost-intensive calibration effort. NMR spectroscopy, with its advantage being a direct comparison method without need for calibration, has a high potential for closed-loop process control while exhibiting short set-up times. Compact NMR instruments make NMR spectroscopy accessible in industrial and rough environments for process monitoring and advanced process control strategies. We present a fully automated data analysis approach which is completely based on physically motivated spectral models as first principles information (Indirect Hard Modelling - IHM) and applied it to a given pharmaceutical lithiation reaction in the framework of the European Union's Horizon 2020 project CONSENS. Online low-field NMR (LF NMR) data was analysed by IHM with low calibration effort, compared to a multivariate PLS-R (Partial Least Squares Regression) approach, and both validated using online high-field NMR (HF NMR) spectroscopy. Berlin, Heidelberg Springer 2018 Analytical and Bioanalytical Chemistry 410 14 3349 3360 10.1007/s00216-018-1020-z 2018-05-07 OPUS4-40231 Beitrag zu einem Tagungsband Guhl, Svetlana; Kern, Simon; Meyer, Klas; Gräßer, Patrick; Wander, Lukas; Maiwald, Michael Online NMR Spectroscopy for Process Monitoring in Intensified Continuous Production Plants Process analytical techniques are extremely useful tools for chemical production and manufacture and are of particular interest to the pharmaceutical, food and (petro-) chemical industries. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analysers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are currently not available off the rack. A major advantage of NMR spectroscopy is that the method features a high linearity between absolute signal area and sample concentration, which makes it an absolute analytical comparison method which is independent of the matrix. This is an important prerequisite for robust data evaluation strategies within a control concept and reduces the need for extensive maintenance of the evaluation model over the time of operation. Additionally, NMR spectroscopy provides orthogonal, but complimentary physical information to conventional, e.g., optical spectroscopy. It increases the accessible information for technical processes, where aromatic-toaliphatic conversions or isomerizations occur and conventional methods fail due to only minor changes in functional groups. As a technically relevant example, the catalytic hydrogenation of 2-butyne-1,4-diol and further pharmaceutical reactions were studied using an online NMR sensor based on a commercially available low-field NMR spectrometer within the framework of the EU project CONSENS (Integrated Control and Sensing). Frankfurt a. M. DECHEMA e. V., Frankfurt 2017 Processdings of 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) 4th European Conference on Process Analytics and Control Technology (EuroPACT 2017) Potsdam, Germany 10.05.2017 12.05.2017 103 103 2017-05-15 OPUS4-38364 Beitrag zu einem Tagungsband Guhl, Svetlana; Meyer, Klas; Kern, Simon; Gräßer, Patrick; Maiwald, Michael Maiwald, Michael Process monitoring of an intensified continuous production unit with compact NMR spectroscopy Monitoring chemical reactions is the key to chemical process control. Today, mainly optical online methods are applied. NMR spectroscopy has a high potential for direct loop process control. Compact NMR instruments based on permanent magnets are robust and relatively inexpensive analyzers, which feature advantages like low cost, low maintenance, ease of use, and cryogen-free operation. Instruments for online NMR measurements equipped with a flow-through cell, possessing a good signal-to-noise-ratio, sufficient robustness, and meeting the requirements for integration into industrial plants (i.e., explosion safety and fully automated data analysis) are cur-rently not available off the rack. Recently, promising benchtop NMR instruments with acceptable performance came to market and process integrated sensors developed on basis of such laboratory instruments are on their way. 2016 Tagungsband – 12. Kolloquium Prozessanalytik 12. Kolloquium des Arbeitskreises Prozessanalytik Berlin, Germany 28.11.2016 30.11.2016 P17, 75 77 urn:nbn:de:kobv:b43-383646 http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de 2016-11-21 OPUS4-41577 Beitrag zu einem Tagungsband Maiwald, Michael; Gräßer, Patrick; Wander, Lukas; Zientek, Nicolai; Guhl, Svetlana; Meyer, Klas; Kern, Simon Strangers in the Night—Smart Process Sensors in Our Current Automation Landscape The departure from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Smart sensors enable concepts like self-diagnostics, self-calibration, and self-configuration/parameterization whenever our current automation landscape allows it. Here we summarize the currently discussed general requirements for process sensors 4.0 and introduce a smart online NMR sensor module as example, which was developed for an intensified industrial process funded by the EU's Horizon 2020 research and innovation programme (www.consens-spire.eu). Basel MDPI 2017 Proceedings 1 Eurosensors 2017 Conference Paris, France 03.09.2017 06.09.2017 628 631 urn:nbn:de:kobv:b43-415772 10.3390/proceedings1040628 http://creativecommons.org/licenses/by/3.0/de/deed.de 2017-08-24