Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-48634 Zeitschriftenartikel Dietrich, Paul M.; Lange, Nele; Lippitz, Andreas; Holzweber, Markus; Kulak, N.; Unger, Wolfgang Click chemistry on silicon nitride for biosensor fabrication Biosensors are of essential importance in medical and biological diagnostics. Often, they are produced using silane chemistry on glass or silicon oxide surfaces. However, controlling that silane chemistry is challenging. Here, we present an alternative strategy to form functional organic layers and biosensors on silicon Nitride (Si3N4). H-terminated Si3N4 films are used to generate reactive azide groups by various azidation methods. Biomolecular probes can then be immobilized using click chemistry reactions with the azide groups and due to its high sensitivity in XPS a fluorine-substituted test alkyne was utilized to optimize click chemistry conditions. After that a biotinylated alkyne was clicked to Si3N4 surfaces followed by immobilization of streptavidin as analyte in a model assay. The functionalized surfaces were thoroughly characterized by surface chemical analysis using X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS)spectroscopy. Elsevier B.V. 2019 Applied Surface Science 481 10 15 10.1016/j.apsusc.2019.03.002 2019-08-06 OPUS4-48019 Zeitschriftenartikel Holzweber, Markus; Lippitz, Andreas; Hesse, R.; Denecke, R.; Werner, W.; Unger, Wolfgang The use of ionic liquids for the determination of the spectrometer transmission function in X-ray photoelectron spectroscopy (XPS) The uncertainty of measurement in quantitative XPS analysis can be reduced by using a calibrated spectrometer transmission function T (E), which is usually determined by taking spectra from Au, Ag, Cu and Ge elemental reference materials. However, this approach is quite time-consuming due to required sample preparation steps like sputter cleaning etc., and the relatively big number of samples to be measured. This contribution proposes the use of the ionic liquids [C2C1im][NTf2] and [C3C1im][NTf2] as reference materials for a determination of T(E). These multi-elemental samples deliver five intensive photoemission peaks, F 1s, O 1s, N 1s, C 1s and S 2p, in an energy window from 160 eV to 700 eV which is of specific interest for applications of quantitative XPS for surface chemical analysis of soft matter, one of the major applications of XPS. Elsevier B.V. 2019 Journal of Electron Spectroscopy and Related Phenomena 233 51 56 10.1016/j.elspec.2019.03.008 2019-05-20