Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-43143 Posterpräsentation Gawlitza, Kornelia; Bartelmeß, Jürgen; Bartholmai, Matthias; Neumann, Patrick P.; Johann, Sergej; Tiebe, Carlo Fluorescence sensor for the long-term monitoring of gaseous ammonia Ammonia and its reaction products can cause considerable damage of human health and ecosystems, increasing the necessity for reliable and reversible sensors to monitor traces of gaseous ammonia in ambient air directly on-site or in the field. Although various types of gas sensors are available, fluorescence sensors have gained importance due to advantages such as high sensitivity and facile miniaturization. Here, we present the development of a sensor material for the detection of gaseous ammonia in the lower ppm to ppb range by incorporation of a fluorescent dye, which shows reversible fluorescence modulations as a function of analyte concentration, into a polymer matrix to ensure the accumulation of ammonia. A gas standard generator producing standard gas mixtures, which comply with the metrological traceability in the desired environmentally relevant measurement range, was used to calibrate the optical sensor system. To integrate the sensor material into a mobile device, a prototype of a hand-held instrument was developed, enabling straightforward data acquisition over a long period. 2017 Colloquium of Optical Spectrometry (COSP) 2017 Berlin, Germany 27.11.2017 29.11.2017 2017-11-28 OPUS4-43351 Posterpräsentation Gawlitza, Kornelia Novel sensor for long-term monitoring of ammonia in gas phase Pollution through emission of toxic gases is of utmost environmental concern, raising the interest in developing reliable gas sensors. Exemplarily, ammonia and its conversion products can provoke considerable damage on human health and ecosystems. Hence, there is a need for reliable and reversible sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for field measurements. Although various types of sensors such as potentiometric, amperometric, and biological sensors are available for detecting trace amounts of gases, fluorescent sensors have gained importance due to several advantages such as high sensitivity, possible miniaturization, as well as potential multiplexing. Herein, we present the development of a sensor material for gaseous ammonia in the lower ppm or even ppb range using optical fluorescence as transduction mechanism due to its intrinsically high sensitivity and high spatial resolution.[1] Therefore, a fluorescent dye, which shows reversible fluorescence enhancement in the presence of the analyte was incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. To calibrate the designed optical sensor system a gas standard generator was used, producing standard gas mixtures, which comply with the metrological traceability for ammonia gas standards in the desired environmentally relevant measurement range.[2] Beside the development of a highly sensitive, selective, and reversible sensor, the integration of such systems into mobile sensor devices is addressed. Therefore, a prototype of a miniaturized hand-held instrument was developed enabling a straightforward and long-term read-out of the measurement signal. 2017 13. Dresdner Sensor Symposium (13. DSS) Dresden, Germany 04.12.2017 06.12.2017 2017-12-07 OPUS4-43352 Beitrag zu einem Tagungsband Gawlitza, Kornelia; Tiebe, Carlo; Banach, Ulrich; Noske, Reinhard; Bartholmai, Matthias; Rurack, Knut Novel sensor for long-term monitoring of ammonia in gas phase Because ammonia and its reaction products can cause considerable damage to human health and ecosystems, there is a need for reliably operating and reversibly interacting sensor materials to monitor traces of gaseous ammonia in ambient air, which at best can be used on-site for in-the-field measurements. Herein, the development of a sensor material for gaseous ammonia in the lower ppm to ppb range using optical fluorescence as transduction mechanism is presented. A fluorescent dye, which shows reversible fluorescence enhancement in the presence of ammonia is incorporated into a polymer matrix, the latter to ensure the accumulation of ammonia. The sensor material is integrated into a prototype of a miniaturized sensor device, facilitating long-term operation. To calibrate the optical sensor system a gas standard generator, producing standard gas mixtures, is used, leading to a sensitivity down to lower ppm concentrations of ammonia. 2017 13. Dresdner Sensor-Symposium 2017 13. Dresdner Sensor-Symposium 2017 Dresden, Germany 04.12.2017 06.12.2017 P4.02, 272 276 10.5162/13dss2017/P4.02 2017-12-07