Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-31336 Zeitschriftenartikel Almeida, Ângela; Calisto, V.; Esteves, V.I.; Schneider, Rudolf; Soares, A.M.V.M.; Figueira, E.; Freitas, R. Presence of the pharmaceutical drug carbamazepine in coastal systems: Effects on bivalves Carbamazepine (CBZ), an antiepileptic drug, is one of the most commonly detected pharmaceutical drugs in aquatic ecosystems, and is used as a marker of urban pollution. Since CBZ is designed to exert a biological effect, when it reaches aquatic environment high probability exist for toxic effects on non-target organisms. The present study evaluated the acute toxicity of environmentally relevant concentrations of CBZ (0.00, 0.03, 0.30, 3.00, 9.00 µg/L) in the edible clams Venerupis decussata (a native species) and Venerupis philippinarum (an invasive species) collected from the Ria de Aveiro. The effects on both species were assessed through the use of a battery of biomarkers mainly related with health status and oxidative stress. Furthermore, in this work an alternative and promising tool, the direct competitive immunoassay ELISA, for the direct CBZ quantification in clam's tissues, was applied. The results of the present work showed that CBZ in clam's tissues increased with the exposure concentration and V. decussata gave slightly higher values than V. philippinarum. Although the clams accumulated lower levels of CBZ than the concentration of exposure, these concentrations were enough to impair the health status and induce oxidative stress. However, a different response to CBZ was observed in the two species. While in V. philippinarum the lipid peroxidation levels increased at the highest CBZ concentration (9.00 µg/L), in V. decussata a significant decrease was seen. Moreover, glutathionse S-transferase activity was stimulated in V. decussata and decreased in V. philippinarum. Nevertheless, an induction of glutathione reductase, superoxide dismutase and cytochrome P450 3A4 activities was found in both species as a result of the exposure. The results indicate that, probably, V. philippinarum have a less efficient antioxidant system than V. decussata, and are therefore less capable to neutralize oxidative stress and consequently more sensitive to CBZ. The risk quotient determined for the Ria de Aveiro was higher than 1 indicating that a ecotoxicological risk is suspected. Furthermore, bioaccumulation of CBZ in clams should be taken into consideration since this chemical might be transferred along the food chain and affect non-target organisms. Amsterdam [u.a.] Elsevier 2014 Aquatic toxicology 156 74 87 10.1016/j.aquatox.2014.08.002 2016-02-20 OPUS4-24306 Zeitschriftenartikel Calisto, V.; Bahlmann, Arnold; Schneider, Rudolf; Esteves, V.I. Application of an ELISA to the quantification of carbamazepine in ground, surface and wastewaters and validation with LC-MS/MS Carbamazepine is a psychiatric pharmaceutical widely detected in aquatic environments. Due to its generalized occurrence and environmental persistence it might be considered as an anthropogenic pollution indicator. In this research, a previously developed enzyme-linked immunosorbent assay (ELISA), based on a commercial monoclonal antibody, was applied to the quantification of carbamazepine in ground, surface and wastewaters and results were validated by liquid chromatography–tandem mass spectrometry (LC–MS/MS). The performance of the applied ELISA methodology was tested in the presence of high concentrations of sodium chloride and dissolved organic matter. The method was not significantly affected by matrix effects, being adequate for the quantification of carbamazepine in environmental samples, even without sample pre-treatment. This method allows the quantification of carbamazepine in the range of 0.03–10 µg L-1, with a relative error lower than 30%. Due to a pH dependent cross-reactivity with cetirizine, an antihistaminic drug, the assay also enabled the quantification of cetirizine in the samples. The application of the developed method to the quantification of carbamazepine was performed by using environmental samples with very different matrices, collected in the geographical area of Ria de Aveiro, an estuarine system located in the North of Portugal. Carbamazepine was detected in all analyzed wastewater samples and in one surface water with concentrations between 0.1 and 0.7 µg L-1. Validation with LC–MS/MS revealed that results obtained by ELISA are 2–28% overestimated, which was considered highly satisfactory due to the absence of sample pre-treatments. Kidlington, Oxford Elsevier Science 2011 Chemosphere 84 11 1708 1715 10.1016/j.chemosphere.2011.04.072 2016-02-19 OPUS4-38502 Zeitschriftenartikel Freitas, R.; Almeida, Ângela; Calisto, V.; Velez, C.; Moreira, A.; Schneider, Rudolf; Esteves, V. I.; Wrona, F. J.; Figueira, E.; Soares, A. M. V. M. The impacts of pharmaceutical drugs under ocean acidification: Newdata on single and combined long-term effects of carbamazepine on Scrobicularia plana Ocean acidification and increasing discharges of pharmaceutical contaminants into aquatic systems are among key and/or emerging drivers of environmental change affecting marine ecosystems. A growing body of evidence demonstrates that ocean acidification can have direct and indirect impacts on marine organisms although combined effects with other stressors, namely with pharmaceuticals, have received very little attention to date. The present study aimed to evaluate the impacts of the pharmaceutical drug Carbamazepine and pH 7.1, acting alone and in combination, on the clamScrobicularia plana. For this, a long-termexposure (28 days)was conducted and a set of oxidative stress markers was investigated. The results obtained showed that S. plana was able to develop mechanisms to prevent oxidative damage when under low pH for a long period, presenting higher survival when exposed to this stressor compared to CBZ or the combination of CBZ with pH 7.1. Furthermore, the toxicity of CBZ on S. plana was synergistically increased under ocean acidification conditions (CBZ + pH 7.1): specimens survival was reduced and oxidative stress was enhanced when compared to single exposures. These findings add to the growing body of evidence that ocean acidification will act to increase the toxicity of CBZ to marine organisms,which has clear implications for coastal benthic ecosystems suffering chronic pollution from pharmaceutical drugs. Elsevier B.V. 2016 Science of the Total Environment 541 977 985 10.1016/j.scitotenv.2015.09.138 2016-11-30 OPUS4-38505 Zeitschriftenartikel Pires, A.; Almeida, Ângela; Calisto, V.; Schneider, Rudolf; Esteves, V. I.; Wrona, F. J.; Soares, A. M. V. M.; Figueira, E.; Freitas, R. Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina In the last decade studies have reported the presence of several pharmaceutical drugs in aquatic environments worldwide and an increasing effort has been done to understand the impacts induced on wildlife. Among the most abundant drugs in the environment is caffeine, which has been reported as an effective chemical anthropogenic marker. However, as for the majority of pharmaceuticals, scarce information is available on the adverse effects of caffeine on marine benthic organisms, namely polychaetes which are the most abundant group of organisms in several aquatic ecossystems. Thus, the present study aimed to evaluate the biochemical alterations induced by environmentally relevant concentrations of caffeine on the polychaete species Diopatra neapolitana and Arenicola marina. The results obtained demonstrated that after 28 days exposure oxidative stress was induced in both species, especially noticed in A. marina, resulting from the incapacity of antioxidant and biotransformation enzymes to prevent cells from lipid peroxidation. The present study further revealed that D. neapolitana used glycogen and proteins as energy to develop defense mechanisms while in A. marina these reserves were maintained independently on the exposure concentration, reinforcing the low capacity of this species to fight against oxidative stress. Elsevier Ltd. 2016 Environmental Pollution 2016 214 456 463 10.1016/j.envpol.2016.04.031 2016-11-30 OPUS4-38508 Zeitschriftenartikel Cruz, D.; Almeida, Ângela; Calisto, V.; Esteves, V. I.; Schneider, Rudolf; Wrona, F. J.; Soares, A. M. V. M.; Figueira, E.; Freitas, R. Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers Caffeine is known to be one of the most consumed psychoactive drugs. For this reason, caffeine is continuously released into the environment with potential impacts on inhabiting organisms. The current study evaluated the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure for 28 days to caffeine (0.5, 3.0 and 18.0 mg/L). The results obtained showed that, with the increasing caffeine concentrations, an increase in clams defense mechanisms (such as antioxidant and biotransformation enzymes activity) was induced which was accompanied by an increase in protein content. Nevertheless, although an increase on defense mechanisms was observed, clams were not able to prevent cells from lipid peroxidation that increased with the increase of caffeine concentration. Furthermore, with the increase of exposure concentrations, clams increased their metabolic activity (measured by electron transport activity), reducing their energy reserves (glycogen content), to fight against oxidative stress. Overall, the present study demonstrated that caffeine may impact bivalves, even at environmentally relevant concentrations, inducing oxidative stress in organisms. The present study is an important contribution to address knowledge gaps regarding the impacts of long-term exposures to pharmaceuticals since most of the studies assessed the effects after acute exposures, most of them up to 96 h. Elsevier Ltd. 2016 Chemosphere 2016 160 95 103 10.1016/j.chemosphere.2016.06.068 2016-11-30 OPUS4-38509 Zeitschriftenartikel Pires, A.; Almeida, Ângela; Calisto, V.; Schneider, Rudolf; Esteves, V. I.; Wrona, F. J.; Soares, A. M. V. M.; Figueira, E.; Freitas, R. Hediste diversicolor as bioindicator of pharmaceutical pollution: Results from single and combined exposure to carbamazepine and caffeine Several environmental stressors have been identified as key and/or emerging drivers of habitat change that could significantly influence marine near-shore ecosystems. These include increasing discharges of pharmaceutical contaminants into the aquatic coastal systems. Pharmaceutical drugs are often detected in aquatic environments but still information on their toxicity impacts on inhabiting species is scarce, especially when acting in combination. Furthermore, almost no information is available on the impacts of pharmaceuticals in polychaetes, often the most abundant taxon in benthic communities and commonly used as indicator species of environmental conditions. Therefore, the present study aimed to evaluate the biochemical alterations induced in the polychaete Hediste diversicolor, from a low contaminated area at the Ria de Aveiro lagoon (Portugal), by the antiepileptic drug carbamazepine (0.0 - control, 0.3, 3.0, 6.0 and 9.0 μg/L) and the stimulant caffeine (0.0 - control, 0.5, 3.0, and 18.0 μg/L), acting alone and in combination (0.3 CBZ + 0.5 CAF and 6.0 CBZ + 3.0 CAF). Glutathione Stransferases (GSTs), superoxide dismutase (SOD) and catalase (CAT) activities was determined in Hediste diversicolor from each condition. Lipid peroxidation (LPO), glutathione reduced and oxidized (GSH and GSSG), glycogen and electron transport system (ETS) were also measured. The results obtained clearly revealed that both drugs induced oxidative stress in H. diversicolor, shown by the increase on LPO levels and decrease on total glutathione and GSH/GSSG ratio with the increase of exposure concentrations. Furthermore, the present findings demonstrated that polychaetes biotransformation capacity as well as antioxidant defense mechanisms were not sufficiently efficient to fight against the excess of reactive oxygen species (ROS) leading to LPO when organisms were exposed to both drugs. Our results also demonstrated that polychaetes tended to decrease the activity of ETSwhen exposed to drugs, avoiding energy expenditurewhich may prevent them fromgreater damages. The present study further revealed that the impacts induced by the combination of both drugswere similar to those obtained at the highest drugs concentrations acting alone. Elsevier Inc. 2016 Comparative Biochemistry and Physiology, Part C 2016 188 30 38 10.1016/j.cbpc.2016.06.003 2016-11-30 OPUS4-43304 Zeitschriftenartikel Schneider, Rudolf; Oliveira, P.; Almeida, Ângela; Calisto, V.; Esteves, V. I.; Wrona, F. J.; Soares, A. M. V. M.; Figueira, E.; Freitas, R. Physiological and biochemical alterations induced in the mussel Mytilus galloprovincialis after short and long-term exposure to carbamazepine The bivalve Mytilus galloprovincialis collected in the Ria de Aveiro, was selected to evaluate the acute and chronic effects of carbamazepine (CBZ) at environmentally relevant concentrations. CBZ is an antiepileptic drug widely found in the aquatic environment with toxic effects to inhabiting organisms. However, few studies evaluated the acute and chronic toxicity of this drug. The experiment was performed 'by exposing mussels to 0.0, 0.3, 3.0, 6.0 and 9.0 CBZ mu g/L, for 96 h and 28 days. To assess the toxicity of the drug, a battery of biomarkers related to mussels general physiological health status and oxidative stress was applied. CBZ was quantified in mussel tissues by an Enzyme-Linked Immunosorbent Assay (ELISA). The results obtained show that CBZ did not induce oxidative stress. However, our findings,demonstrated that the drug was taken up by mussels even though presenting low bioconcentration factor (BCF) values (up to 2.2). Furthermore, our results demonstrated that after a chronic exposure the physiological parameters, namely the condition and gonadosomatic indices, were negatively affected which may impair organisms' reproductive capacity with consequences to population sustainability. Elsevier Ltd. 2017 Water Research 117 102 114 10.1016/j.watres.2017.03.052 2017-12-06