Dokument-ID Dokumenttyp Autoren/innen Persönliche Herausgeber/innen Haupttitel Abstract Auflage Verlagsort Verlag Herausgeber (Institution) Erscheinungsjahr Titel des übergeordneten Werkes Jahrgang/Band ISBN Veranstaltung Veranstaltungsort Beginndatum der Veranstaltung Enddatum der Veranstaltung Ausgabe/Heft Erste Seite Letzte Seite URN DOI Lizenz Datum der Freischaltung OPUS4-59366 Zeitschriftenartikel Quackatz, Lukas; Griesche, Axel; Nietzke, Jonathan; Kannengießer, Thomas In situ measurement of hydrogen concentration in steel using laser‑induced breakdown spectroscopy (LIBS) The ISO 3690 standard "Determination of hydrogen content in arc weld metal" requires a thermal activation of the diffusible hydrogen in a piece of weld metal for the subsequent ex situ concentration measurement by carrier gas hot extraction CGHE or thermal desorption spectroscopy (TCD). Laser-induced breakdown spectroscopy (LIBS) offers a time and spatially resolved, almost non-destructive, in situ measurement of hydrogen at surfaces without sample preparation. We measured hydrogen in steels, which were charged either electrochemically or by high-pressure hydrogen gas, and compared the results. Further, the feasibility of quantitative hydrogen line scan measurements with LIBS was demonstrated by measuring hydrogen at water jet cut surfaces. The hydrogen concentrations measured with the help of LIBS were compared with CGHE measurements. It was observed that hydrogen can be reliably measured with LIBS for concentrations larger than 2 wt.-ppm. The maximum hydrogen concentration achieved using electrochemical charging was 85.1 ppm. The results show that LIBS is a promising technique for time- and spatially resolved measurements of hydrogen in steels. Springer 2024 Welding in the World IIW Annual Assembly 2023 Singapore 1 9 urn:nbn:de:kobv:b43-593664 10.1007/s40194-023-01677-2 https://creativecommons.org/licenses/by/4.0/deed.de 2024-01-19 OPUS4-59073 Zeitschriftenartikel Klewe, Tim; Völker, Tobias; Landmann, Mirko; Kruschwitz, Sabine LIBS-ConSort: Development of a sensor-based sorting method for construction and demolition waste AbstractA joint project of partners from industry and research institutions approaches the challenge of construction and demolition waste (CDW) sorting by investigating and testing the combination of laser-induced breakdown spectroscopy (LIBS) with near-infrared (NIR) spectroscopy and visual imaging. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.)Focusing on Berlin as an example, the entire value chain will be analyzed to minimize economic / technological barriers and obstacles at the cluster level and to sustainably increase recovery and recycling rates.The objective of this paper is to present current progress and results of the test stand development combining LIBS with NIR spectroscopy and visual imaging. In the future, this laboratory prototype will serve as a fully automated measurement setup to allow real-time classification of CDW on a conveyor belt. Ernst & Sohn GmbH 2023 ce/papers 6 21st Ibausil - International Conference on Building Materials Weimar, Germany 13.09.2023 15.09.2023 6 973 976 urn:nbn:de:kobv:b43-590734 10.1002/cepa.2866 https://creativecommons.org/licenses/by/4.0/deed.de 2023-12-07 OPUS4-58777 Vortrag Quackatz, Lukas In situ Messung chemischer Konzentrationen im Schmelzbad von Duplexstählen während des WIG-Schweißens Die Kombination aus hoher Korrosionsbeständigkeit und guten mechanischen Eigenschaften von Duplexstählen (DSS) ist auf ihre chemische Zusammensetzung und das ausgewogene Phasenverhältnis von Ferrit (α) und Austenit (γ) zurückzuführen. Viele industrielle Anwendungen erfordern eine stoffschlüssige Verbindung von DSS. Das Wolfram-Inertgas-Schweißen (WIG) ist relativ einfach zu handhaben, benötigt nur wenig Platz und ermöglicht ein automatisiertes Schweißen, mit sehr hoher Reproduzierbarkeit und ist daher hervorragend zum Schweißen von DSS. Während der Erstarrung dieser Dualphasenstähle kann es zu kritischen Phasenverhältnissen von α und γ kommen, was zu Erstarrungsrissen, Korrosionsanfälligkeit, geringerer Duktilität und kritischen Festigkeitswerten führt. Um die gewünschten Werkstoffeigenschaften zu erhalten, muss daher die α/γ-Verteilung zuverlässig vorhergesagt werden. Dies geschieht in der Regel mit Hilfe des WRC1992-Diagramms. Die Vorhersagegenauigkeit des Ferritgehalts in diesem Diagramm ist jedoch meist nicht genau genug und muss daher optimiert werden. Daher ist es notwendig, selbst kleinste Veränderungen in der chemischen Zusammensetzung des Schweißguts idealerweise während des Schweißens zu überwachen. Dies wird in diesen Experimenten mit Hilfe der laser-induzierten Plasmaspektroskopie (LIBS) durchgeführt. Ein großer Vorteil dieser Technik ist die hochgenaue zeit- und ortsaufgelöste Messung der chemischen Zusammensetzung während des Schweißens. In vorherigen Arbeiten wurde bereits die chemische Zusammensetzung im Schweißgut und der WEZ quantifiziert. In der präsentierten Untersuchung wird der Einfluss einzelner Elemente, wie Nb und Cu, auf das resultierende Schweißmikrogefüge untersucht. 2023 BMDK der Universität Magdeburg Magdeburg, Germany 08.11.2023 2023-11-10 OPUS4-58756 Posterpräsentation Klewe, Tim LIBS-ConSort: Sensor-based sorting of construction and demolition waste In construction and demolition waste (CDW) recycling, the preference to date has been to apply simple but proven techniques to sort and process large quantities of construction rubble in a short time. This contrasts with the increasingly complex composite materials and structures in the mineral building materials industry. An automated, sensor-based sorting of these building materials could complement or replace the practice of manual sorting to improve processing speed, recycling rates, sorting quality, and prevailing health conditions for the executing staff. A joint project of partners from industry and research institutions approaches this task by investigating and testing the combination of laser-induced breakdown spectroscopy (LIBS) with near-infrared (NIR) spectroscopy and visual imaging. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of CDW, and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.) We present current advances and results about the methodological development combining LIBS with NIR spectroscopy and visual imaging. Here, applying data fusion proves itself beneficial to improve recognition rates. In the future, a laboratory prototype will serve as a fully automated measurement setup to allow real-time classification of CDW on a conveyor belt. 2023 V. International Conference Progress of Recycling in the Built Environment (RILEM VPRE) Weimar, Germany 10.10.2023 12.10.2023 2023-11-06 OPUS4-58657 Vortrag Quackatz, Lukas Analyzing the impact of individual alloying elements on weld microstructure: In situ chemical composition measurement during TIG welding of Duplex Stainless Steels microstructure Various industrial applications require the joining of DSS components. Tungsten Inert Gas (TIG) welding is particularly well-suited for this purpose due to the ability to achieve highly reproducible automated welds. However, during solidification of the weld pool, critical phase ratios of ferrite (α) and austenite (γ) may occur, leading to solidification cracking, increased corrosion susceptibility, lower ductility and critical strength values. Hence, in order to achieve the desired material characteristics, it is crucial to accurately predict the α/γ phase ratio within the weld. Conventionally, the WRC-1992 diagram is employed for this purpose. In our study, we used Laser-Induced Breakdown Spectroscopy (LIBS) to track alterations in the chemical composition of the weld metal on the surface throughout the welding process. One significant benefit of this method is its capability to provide precise and real-time measurements of chemical compositions during welding, both temporally and spatially. In previous investigations, we could develop routines to quantify the measurement of chemical compositions within the weld metal and the Heat-Affected Zone (HAZ). The conducted research focuses on examining the alterations in chemical concentrations of specific alloying elements, namely Cu and Mn as γ-forming elements, and Nb and Cr as α-forming elements, during welding. These changes are measured in real-time using Laser-Induced Breakdown Spectroscopy (LIBS). To achieve this, both the ferrite number, determined through magnetic-inductive techniques, and the weld microstructure are analyzed. Through image-analytical methods, a correlation is established between the microstructure and the LIBS data obtained. 2023 AJP 2023 Braga, Portugal 19.10.2023 20.10.2023 2023-10-26 OPUS4-58495 Vortrag Klewe, Tim LIBS ConSort: Development of a sensor-based sorting method for constuction and demolition waste Closed material cycles and unmixed material fractions are required to achieve high recovery and recycling rates in the building industry. In construction and demolition waste (CDW) recycling, the preference to date has been to apply simple but proven techniques to process large quantities of construction rubble in a short time. This is in contrast to the increasingly complex composite materials and structures in the mineral building materials industry. Manual sorting involves many risks and dangers for the executing staff and is merely based on obvious, visually detectable differences for separation. An automated, sensor-based sorting of these building materials could complement or replace this practice to improve processing speed, recycling rates, sorting quality, and prevailing health conditions. A joint project of partners from industry and research institutions approaches this task by investigating and testing the combination of laser-induced breakdown spectroscopy (LIBS) with near-infrared (NIR) spectroscopy and visual imaging. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.) Focusing on Berlin as an example, the entire value chain will be analyzed to minimize economic / technological barriers and obstacles at the cluster level and to sustainably increase recovery and recycling rates. We present current advances and results about the test stand development combining LIBS with NIR spectroscopy and visual imaging. In the future, this laboratory prototype will serve as a fully automated measurement setup to allow real-time classification of CDW on a conveyor belt. 2023 21. International Conference on Building Materials (Ibausil) Weimar, Germany 13.09.2023 15.09.2023 2023-10-06 OPUS4-58314 Vortrag Quackatz, Lukas LIBS In situ Chemical Analysis in Duplex Stainless Steel Welding The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, tungsten inert gas welding (TIG) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which leads to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), and this accumulation can be detected using LIBS. Unlike conventional LIBS analyses, which requires reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) can determine the chemical composition solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for quantitative analysis of metal samples. We present the results of in situ CF-LIBS analysis during TIG DSS welding. Using a new approach, it is possible to quantitatively determine the chemical composition of the weld metal directly in the welding process. The results of the CF-LIBS analysis are compared with the results of the calibration-based PLS analysis and reasonable agreement is found. Thus, the CF-LIBS method offers the significant advantage of quickly measuring in situ the concentrations of the main alloying elements that prevent the formation of welding defects, without the tedious calibration procedure. 2023 EMSLIBS 2023 Porto, Portugal 04.09.2023 07.09.2023 2023-09-19 OPUS4-58330 Zeitschriftenartikel Riedel, Jens; Hufgard, Josefin; You, Yi LIBS at high duty-cycles: effect of repetition rate and temporal width on the excitation laser pulses Laser-induced breakdown spectroscopy (LIBS) is becoming a more mature technology every year with new variants such as laser ablation molecular isotopic spectrometry, reheating by various discharge techniques, and multiple pulse excitation schemes, in which sometimes lasers of different pulse lengths are used. However, lasers with inherent parameters like pulse length and repetition rate are still almost exclusively employed. Recent years have witnessed the advent of novel high-repetition-rate laser concepts for machining processes, like welding, milling, and engraving. Here, a comprehensive study of single-pulse LIBS spectra of a single aluminum target is presented to showcase the applicability of flexible high duty-cycle master oscillator power amplifier (MOPA) lasers. Although traditional flashlamp-pumped Fabry-Pérot lasers only permit a variation in the pulse energy and are operated at very low duty-cycles, MOPA lasers add repetition rate and pulse length as variable parameters. A thorough analysis of the temporal plasma behavior revealed the emission dynamic to closely match the excitation laser pulse pattern. An aluminum sample's spectral response was shown to be significantly impacted by variations in both rate and length. Although the spectral emission strength of the elemental lines of Al, Sr, and Ca all peaked at slightly different parameter settings, the strongest impact was found on the relative abundance of molecular AlO bands. Unlike in previous laser ablation molecular isotopic spectrometry (LAMIS) publications, the latter could be readily detected with a good intensity and well-resolved spectral features without any temporal gating of the detector. This finding, together with the fact that MOPA lasers are both inexpensive and dependable, makes for a promising combination for future studies including the detection of diatomic band structures. 2023 Frontiers in Physics 11 1 8 urn:nbn:de:kobv:b43-583300 10.3389/fphy.2023.1241533 https://creativecommons.org/licenses/by/4.0/deed.de 2023-09-18 OPUS4-58077 Zeitschriftenartikel Erler, A.; Riebe, D.; Beitz, T.; Löhmannsröben, H.-G.; Leenen, M.; Pätzold, S.; Ostermann, Markus; Wójcik, M. Mobile Laser-Induced Breakdown Spectroscopy for Future Application in Precision Agriculture—A Case Study In precision agriculture, the estimation of soil parameters via sensors and the creation of nutrient maps are a prerequisite for farmers to take targeted measures such as spatially resolved fertilization. In this work, 68 soil samples uniformly distributed over a field near Bonn are investigated using laser-induced breakdown spectroscopy (LIBS). These investigations include the determination of the total contents of macro- and micronutrients as well as further soil parameters such as soil pH, soil organic matter (SOM) content, and soil texture. The applied LIBS instruments are a handheld and a platform spectrometer, which potentially allows for the single-point measurement and scanning of whole fields, respectively. Their results are compared with a high-resolution lab spectrometer. The prediction of soil parameters was based on multivariate methods. Different feature selection methods and regression methods like PLS, PCR, SVM, Lasso, and Gaussian processes were tested and compared. While good predictions were obtained for Ca, Mg, P, Mn, Cu, and silt content, excellent predictions were obtained for K, Fe, and clay content. The comparison of the three different spectrometers showed that although the lab spectrometer gives the best results, measurements with both field spectrometers also yield good results. This allows for a method transfer to the in-field measurements Basel, Schweiz MDPI AG 2023 Sensors 23 16 1 17 urn:nbn:de:kobv:b43-580777 10.3390/s23167178 https://creativecommons.org/licenses/by/4.0/deed.de 2023-08-16 OPUS4-58058 Zeitschriftenartikel Völker, Tobias; Gornushkin, Igor B. Extension of the Boltzmann plot method for multiplet emission lines The Boltzmann plot method is widely used to determine the temperature of laser induced plasma. It involves the use of individual lines that are not easy to find in complex spectra and/or in the spectral range available. If the number of such lines is not enough to build a reliable Boltzmann plot, overlapping lines are often used, which are separated by software. However, line separation is a rather imprecise procedure, which, in addition, requires significant computational costs. This study proposes an extension of the Boltzmann plot method that allows a specific group of unresolved lines to be included in a Boltzmann plot without the need to separate them. This group of lines are multiplets, lines of the same element with similar upper and lower transition states. The multiplet lines along with the individual lines are included in the algorithm, which also includes a correction for self-absorption and is used to determine the plasma temperature. The algorithm is tested on synthetic spectra which are consistent with the model of a homogeneous isothermal plasma in local thermodynamic equilibrium and is shown to be superior to the standard Boltzmann plot method both in more accurate determination of the plasma temperature and in a significant reduction in the computational time. The advantages and disadvantages of the method are discussed in the context of its applications in laser induced breakdown spectroscopy. Elsevier 2023 Journal of Quantitative Spectroscopy and Radiative Transfer 310 1 5 10.1016/j.jqsrt.2023.108741 2023-08-10