TY - GEN A1 - Kjaervik, Marit T1 - Investigations of HKUST-1 exposed to water vapor, methanol and pyridine atmospheres by near-ambient pressure XPS N2 - Metal-organic frameworks (MOFs) are suitable materials for gas storage of small molecules due to their nanoporous, crystalline structure. The extensively studied MOF HKUST-1 consist of Cu(II)-dimers in a paddlewheel structure, with 1,3,5-benzenetricarboxylic acid (BTC) as organic linker. Instability to humidity remains an issue for many types of MOFs, and for HKUST-1, it has been found that exposure to water vapor creates a surface barrier which reduces the gas uptake rate. Near-ambient pressure XPS (NAP-XPS) is a promising method for investigations of the stability and interaction of HKUST-1 with various gas molecules. The oxidation state of copper can be monitored before, during and after exposure to various gases. This does not only provide information on the stability of the MOFs, but also on the interaction with the gas molecules. NAP-XPS measurements of HKUST-1 exposed to methanol, pyridine and water vapor were performed with EnviroESCA, a laboratory NAP-XPS instrument developed by SPECS. Cu 2p, O 1s and C 1s core level spectra and Cu LMM Auger spectra were acquired at pressures ranging from high vacuum to 4 mbar to assess the oxidation state of copper and the stability of the organic linker. Reference measurements in argon atmosphere were conducted in order to have reference spectra with similar full width of half maxima (FHWM) as the spectra measured in reactive atmospheres. Peak fit analysis of the Cu 2p3/2 core level spectra shows that, as expected, the photoelectron signal mainly originates from Cu(II) species. The contribution from Cu(I) is negligible for samples exposed to argon and methanol, but approximately 4% for samples exposed to water vapor and 8% for samples exposed to pyridine. Within the error of the peak fit analysis, there are no changes in relative Cu(II) percentage with increasing water, methanol or pyridine exposure time pointing to saturation reached already at the lowest time of exposure. T2 - Seminar X-Ray and Electron Spectroscopy at Interfaces group: Chemistry of oxydic and organic interfaces CY - Karlsruhe, Germany DA - 11.10.2019 KW - XPS KW - MOF KW - HKUST-1 KW - NAP-XPS PY - 2019 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/49289 AN - OPUS4-49289 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany