TY - GEN A1 - Haferkamp, Sebastian T1 - Mechanochemical Knoevenagel condensations of benzaldehyde derivates investigated in situ N2 - Mechanochemistry is widely applicable for the synthesis of inorganic, metal-organic, and organic compounds. It is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents, which opens the field to more environmentally friendly syntheses routes. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction leading to α,β-unsaturated compounds. To gain more information on the underlying processes, we investigated the syntheses by a combination of different in situ investigation techniques, including synchrotron X-ray diffraction, Raman spectroscopy and thermography. This combination provides information on the structural changes and temperature influences during milling. Benzaldehyde derivates (nitro- and fluoro-derivates) reacted with malononitrile to the respective benzylidenemalononitriles. The in situ investigations show direct and quantitative conversions. In the case of the fluorinated benzaldehyde derivates we showed the possibility of using liquid substrates in mechanochemical organic synthesis. Surprisingly, after crystallization from a viscous state, the material was suitable for single-crystal X-ray analysis. T2 - Powder Diffraction School 2018 CY - Villigen, Switzerland DA - 24.09.2018 KW - C-C coupling KW - Mechanochemistry KW - In situ KW - Knoevenagel PY - 2018 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/46320 AN - OPUS4-46320 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany