TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Aqueous Dispersions of polypropylene as possible reference material for nanoplastics N2 - Plastic debris in micron and nanometer scale pollutes the nature all over the world. The potential dangers of these pollutants remain unpredictable. While risk assessment studies on microplastics are already popular, nanoplastic has not yet reached the same focus of investigation. The reason for this difference is simple: There is a "methodological gap" in the analytics of plastic particles with a diameter smaller than 1 µm. Submicron and nanoplastic particles are currently not detectable in environmental matrices. Therefore, it is important for researchers to have a well-characterized nanoplastic material, that serves as a reference for nanoplastics found in nature. Our aim was to synthesize nanoplastics made from the most common used plastics such as polypropylene (PP). We found an easy way to form nanoparticles consisting of PP (nano-PP), adapting and improving the method presented for polystyrene (PS). Nano-PP was formed via a top-down method where the polymer was dispersed to acetone and then transferred to water. No additional surfactant is needed to obtain a dispersion which is stable for more than 35 weeks. The success of forming nanoplastics and their size was detected via scattering methods, predominantly dynamic light scattering (DLS). The chemical analysis of the nanoplastics was performed via Fourier Transform Infrared spectroscopy. To examine the good stability of the nanoparticles, zeta potential measurements were performed, which revealed zeta potentials of -30 to -40 mV. T2 - European Polymer Congress 2022 CY - Prag, Czechia DA - 26.06.2022 KW - Nanoplastic PY - 2022 AN - OPUS4-55960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -