TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Palis, Stephan A1 - Kwade, A. A1 - Knaust, Christian T1 - CFD-analysis of Sensible Enthalpy Rise Approach to determine the heat release rate of electric-vehicle-scale lithium-ion batteries T2 - Fire Safety Journal N2 - This paper analyses the suitability of the Sensible Enthalpy Rise Approach for measuring the heat release rate of electric-vehicle-scale lithium-ion batteries. An apparatus is designed that meets the conditions of an electric-vehicle-scale lithium-ion battery fire by using cement board as wall material. Modifications of the Sensible Enthalpy Rise Methodology are presented due to the high emissivity and inhomogeneous temperature distribution of the apparatus wall material: a power 4 approach for the heat flow from the walls to the ambient air and an alternative determination methodology for the wall temperature. A one factor at a time parameter study is performed with Computational Fluid Dynamics simulations, investigating a new calibration method based on a fit approach compared to common methods, the wall temperature determination, the approach for the ambient heat flow, the calibration power and the volume flow at the outlet. The simulations show, that suitable estimations of the heat release rate are obtained by using the modifications for wall temperature determination and the power 4 approach for the ambient heat flow. The three calibration methods provide suitable constants, if the calibration power in the same order of magnitude as the mean of the heat release rate profile of the test object. PB - Elsevier Ltd. KW - Lithium-ion batteries KW - Heat Release Rate KW - Calorimetry KW - Sensible Enthalpy Rise Approach KW - Computational Fluid Dynamics PY - 2020 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/50964 AN - OPUS4-50964 VL - 114 SP - 1 EP - 14 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany