TY - JOUR A1 - Merízio, Leonnam Gotardo A1 - Machado, Ian Pompermayer A1 - Vastamäki, Roosa A1 - de Camargo, Andréa Simone Stucchi A1 - Lastusaari, Mika T1 - Multifunctional persistent luminescent and photochromic hackmanite-based materials prepared by microwave-assisted solid-state synthesis JF - Optical Materials N2 - Advanced optical materials inspired by natural minerals and non-toxic light elements, such as the Hackmanites (Na8Al6Si6O24(Cl,S)2), find vast possibilities of applications as they can simultaneously perform photochromism and persistent luminescence (PersL). In this work, we have explored a rapid and energy-efficient microwaveassisted (MASS) methodology for the synthesis of PersL and photochromic hackmanites. In addition, we have prepared hackmanite materials using a zeolite-free precursor to control the Na–Al–Si ratio and study its influence on the materials photoluminescent properties. The PersL hackmanites showed a white-bluish emission color, with up to 2 h of emission time. Zeolite-free photochromic materials were able to change the color from white to purple/blue efficiently with a few seconds of 254 nm excitation, but the usage of zeolite precursors enhanced the overall optical performance. Microwave synthesis times of 10–40 min were demonstrated to be optimal, as longer times boosted the formation of nepheline spurious phase, which decreases luminescence efficiency. In this way, the MASS method led to a reduction of reaction time up to 98 %, yielding hackmanite materials with similar photoluminescent or photochromic properties compared to those obtained by a 24 h conventional solid-state synthesis. This work represents a significant improvement toward coupling eco-friendly synthetic processes to eco-friendly solid-state materials for PersL illumination and PersL/photochromism optical marking. KW - Hackmanite KW - Persistent luminescence KW - Photochromism KW - Microwave-assisted synthesis PY - 2024 DO - https://doi.org/10.1016/j.optmat.2024.115826 SN - 0925-3467 VL - 155 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-60787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -