TY - THES A1 - Perret, William T1 - Welding Simulation of Complex Automotive Welded Assembly - Possibilities and Limits of the Application of Analytical Temperature Field Solutions N2 - Before the development of computational science, heat conduction problems were mainly solved by analytical techniques. Analytical solutions are exact solutions of differential equations; the investigated physical phenomena, for instance the temperature, are solved locally for one single point independently of the rest of the investigated structure resulting in extremely short computational times. These analytical solutions are however only valid for some simple geometries and boundary conditions making their applications for complex industrial geometries directly not possible. Numerical techniques, such as the Finite Element Method, enable overcoming this problem. However, the numerical simulation of the structural heat effect of welding for complex and large assemblies requires high computational effort and time. Therefore, the wide application of welding simulation in industry is not established, yet. The aim of this study is to combine the advantages of analytical and numerical simulation methods to accelerate the calibration of the thermal model of structure welding simulation. This is done firstly by calibrating automatically the simulation model with a fast analytical temperature field solution and secondly by solving the welding simulation problem numerically with the analytically calibrated input parameters. In order to achieve this goal, the analytical solution of the heat conduction problem for a point source moving in an infinite solid was extended and validated against reference models until a solution for a volumetric heat source moving on a thin small sheet with several arbitrary curved welding paths was found. The potential of this analytical solution by means of computational time was subsequently demonstrated on a semi-industrial geometry with large dimensions and several curved welds. The combined method was then transferred to an industrial assembly welded with four parallel welds. For this joint geometry, it was possible to apply the extended analytical solution. The calibration of the simulation model was done automatically against experimental data by combining the extended fast analytical solution with a global optimisation algorithm. For this calibration, more than 3000 direct simulations were required which run in less computational time than one corresponding single numerical simulation. The results of the numerical simulation executed with the analytically calibrated input parameters matched the experimental data within a scatter band of ± 10 %. The limit of the combined method is shown for an industrial assembly welded with eight overlap welds. For this joint geometry, a conventional numerical approach was applied, since no analytical solution was actually available. The final simulation results matched the experimental data within a scatter band of ± 10 %. The results of this work provide a comprehensive method to accelerate the calibration of the thermal model of the structure welding simulation of complex and large welded assemblies, even though within limitation. In the future, the implementation of this method in a welding simulation tool accessible to a typical industrial user still has to be done. PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin T3 - BAM Dissertationsreihe - 108 KW - Schweißen KW - industrielle Anwendung KW - Simulation KW - analytische Lösung KW - komplexe Geometrie PY - 2013 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/50 AN - OPUS4-50 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505 SN - 978-3-9815944-0-9 SN - 1613-4249 VL - 108 SP - 1 EP - 183 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany