TY - GEN A1 - Stawski, Tomasz T1 - Scattering is a powerful tool to follow nucleation and growth of minerals from solutions N2 - In recent years, we have come to appreciate the astounding intricacy of the processes leading to the formation of minerals from ions in aqueous solutions. The original, and rather naive, ‘textbook’ image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. Does it, however, mean that all the minerals grow through intermediate phases, following a non-classical pathway? In general, the precursor or intermediate species constitute different, often short-lived, points along the pathway from dissolved ions to the final solids (typically crystals in this context). In this regard synchrotron-based scattering (SAXS/WAXS/total scattering) appears to be the perfect tool to follow in situ and in a time-resolved manner the crystallization pathway because of the temporal and spatial length scales that can be directly accessed with these techniques. In this presentation we show how we used scattering to probe the crystallisation mechanisms of calcium sulfate, This system contains minerals that are widespread in diverse natural environments, but they are also important in various industrial settings. Our data demonstrate that calcium sulfate precipitation involves formation and aggregation of sub-3 nm anisotropic primary species. The actual crystallisation and formation of imperfect single crystals of calcium sulfate phases, takes place from the inside of the in itial aggregates. Hence, calcium sulfate follows a non-classical pathway. T2 - X-ray Powder Diffraction at DESY - new opportunities for research and industry CY - Online meeting DA - 22.06.2020 KW - Nucleation KW - Calcium sulfate KW - Diffraction KW - Scattering KW - Synchrotron KW - SAXS/WAXS PY - 2020 UR - https://opus4.kobv.de/opus4-bam/frontdoor/index/index/docId/50943 AN - OPUS4-50943 AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany