TY - CONF A1 - Tabaka, Weronika A1 - Schartel, Bernhard T1 - Bench-scale fire stability testing of carbon fibre reinforced polymer laminates with protective layers N2 - Fire resistance testing of components made of carbon fibre reinforced polymers (CFRP) composites usually demands intermediate-scale or full-scale testing. In this study, a bench-scale test is presented as a practicable and efficient method to assess the improvement in structural integrity of CFRP with different protective interlayers during fire. Fire stability is one of the biggest issues of carbon fibre reinforced polymer (CFRP) composites, particularly when they are using in load bearing applications. As soon as the glass transition temperature of polymer matrix (100-200°C) is achieved, the composite loses its structural integrity, what leads to the distortion and failure. The principal fire stability test is based on simultaneous application of fire and mechanical load. Since the carbon fibres can transfer the tensile loads quite well, the compression load is chosen as a required mechanical load for a test. The fire tests were preceded by a static load test at room temperature to determine ultimate failure load. The specimen was loaded with a compression force until the failure load was reached, which was observed as a buckling. For the fire tests, 10% of compression failure load and direct flame of a fully developed fire (heat flux ≈ 180 kW m-2) were applied simultaneously to the specimen, while the time to failure was measured. The possibilities of bench-scale fire stability testing were presented by investigating new types of laminate structures, which exhibit promising flame retardancy and fireproof properties. The new approach of CFRP laminate differs with a protective concept. Every system consists of two different interlayers (titanium foil, thermoplastic foil PEI, ceramic layer WHIPOX, rubber tape Pyrostat, basalt fibres and kenaf fibres), where the one layer constitutes the fireproof protection, that delays the rise of temperature in the rest of laminate, and the second layer provides very good structural connection with carbon fibre layers, thus improves the mechanical integrity of CFRP composite in fire. The time to failure of CFRP composite was 17s. Protective systems significantly enhance the fire stability and increased time to failure by 3 to 10 times. Thicker specimens showed longer resistance time, however CFRP laminate with ceramic layer and titanium foil presented outstanding results and the best performance. The protection with Kenaf and basalt fibres offered a natural fibre solution with also good fire resistance performance Although bench-scale tests are limited with respect to assessing the performance of components and structures, they are valuable in the assessment of different materials concepts. Furthermore, the reduced effort of conducting bench-scale test (lower costs, time, personnel resources) makes it more practical and effective. T2 - 19th European meeting on Fire Retardant Polymeric Materials (FRPM23) CY - Dübendorf, Switzerland DA - 26.06.2023 KW - Fire resistance KW - Carbon fibre reinforced polymer KW - Bench-scale testing PY - 2023 AN - OPUS4-57880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -