TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Modification of CoCr alloys to optimize of additively welded microstructures and subsequent surface finishing N2 - Due to increasing requirements relating to the efficiency of highly stressed components in turbine or plant construction, the use of cost-intensive, difficult to process materials is increasingly necessary today. In this context, cobalt-chromium alloys in particular are highly resistant to thermal and mechanical stress, as well as to corrosive and abrasive loads. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components in many sectors. In order to realise a homogeneous and isotropic microstructure, alloy modifications are made to the alloy CoCr26Ni9Mo5W. For this purpose, hafnium and zirconium are added at 1 % and 0,33 % by mass each, as these elements are supposed to have a positive effect on the microstructure morphology. Plasma-Transferred-Arc is used for the welding tests. Wall structures are welded by multiple single-layer, overlapping welding beads on low-alloyed steel substrate (S355). The results show that the alloying elements hafnium and zirconium have a clear influence on the microstructure. Hardness measurements were also carried out. With each modification, the hardness is increased compared to the original material. The machining analyses show a reduction in cutting forces using ultrasonic assisted milling for high cutting speed and low feed rate. T2 - 2021 Intermediate meeting of C IX NF CY - Online meeting DA - 09.03.2021 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-Transferred-Arc KW - Filler metal modification KW - Additive manufacturing PY - 2021 AN - OPUS4-52356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -